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Abstract. Consider the discretisation of the initial-value problem Dαu(t) = f (t) for

0< t ≤ T with u(0) = u0, where Dαu(t) is a Caputo derivative of order α ∈ (0,1), using

the L1 scheme on a graded mesh with N points. It is well known that one can prove

the maximum nodal error in the computed solution is at most O (N−min{rα,2−α}), where

r ≥ 1 is the mesh grading parameter (r = 1 generates a uniform mesh). Numerical

experiments indicate that this error bound is sharp, but no proof of its sharpness has been

given. In the present paper the sharpness of this bound is proved, and the sharpness of

the analogous nodal error bounds for the L1 and Alikhanov schemes will also be proved,

using modifications of the L1 analysis.
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1. Introduction

Physical models that use fractional time derivatives have attracted a lot of recent at-

tention from numerical analysts; see the survey paper [5]. Many of these models include

a Caputo time derivative of order α ∈ (0,1), defined [3] for absolutely continuous functions

u : [0, T ]→ R by

Dαu(t) :=
1

Γ (1−α)

∫ t

s=0

(t − s)−αu′(s) ds for 0< t ≤ T. (1.1)

To solve the Caputo initial value problem

Dαu(t) = f (t) for 0< t ≤ T (1.2)

with u(0) given and f smooth, a popular discretisation of Dαu(t) is the L1 difference

scheme. It is well known [12,13] that typical solutions of (1.2) have a weak singularity at
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the initial time t = 0, and to address this difficulty the L1 scheme is usually implemented

on the graded mesh

t0 := 0, tn := T (n/N )r , τn := tn − tn−1 for n= 1,2, . . . , N , (1.3)

where N is any positive integer and the mesh grading parameter r ≥ 1 is chosen by the

user. This mesh is used in Sections 2-4. A consistency and stability argument [13] bounds

the error in the computed solution {un}
N
n=0 by

max
n=0,1,...,N

|u(tn)− un| ≤ CN−min{rα,2−α} (1.4)

with a constant C that depends on the data of the problem. Many papers for time-fractional

initial-boundary problems have used the L1 discretisation (see [11] for a survey) and ob-

tained error estimates identical to (1.4), plus an additional term for the spatial discretisation

error, and confirmed the sharpness of (1.4) by numerical experiments.

In the present paper we shall prove that the bound (1.4) is optimal — i.e. show it is

also a lower bound for the error and give direct explanations of the origins of these two

terms: N−rα is caused by the weak singularity at t = 0, while N−(2−α) is due to effects far

from t = 0.

Note that O (N−rα) and O (N−(2−α)) upper bounds for the error follow from [7, Re-

mark 5] if there one takes σ = α and σ = 2 − α respectively; our lower bounds for the

error complement this result.

The rest of the paper is concerned with related results for other discretisations of frac-

tional derivatives of order α ∈ (0,1). While the overall aims (viz., prove the sharpness of

the error bound and show the origins of the terms appearing in it) are the same for each

scheme, the details of these analyses can vary considerably from the L1 analysis.

First, we consider an averaged variant of the L1 scheme which we write as L1; similar

methods have been studied in [4,9,10] (in [4] the scheme is denoted by L1+). Numerical

results indicate that the computed solution {un}
N
n=0 satisfies the error bound

max
n=0,1,...,N

|u(tn)− un| ≤ CN−min{rα,2}. (1.5)

We shall prove the optimality of (1.5) by first showing that for the typical solution u(t) = tα

the error is at least O (N−rα) on our graded mesh, then for the smooth solution u(t) = t2

(for which a uniform mesh is adequate) we prove that the error in the computed solution

is at least O (N−2). A similar upper bound for the error when u(t) = t2 is derived in [4,

Remark 2].

Alikhanov [1] constructed the L2-1σ discretisation of the Caputo fractional derivative

Dα using piecewise quadratic interpolation of u. When the solution {un} to (1.2) is com-

puted on the graded mesh (1.3) by this method, it is known [2, Lemma 7 and Theorem 1]

that the error satisfies

max
n=0,1,...,N

|u(tn)− un| ≤ CN−min{rα,3−α}. (1.6)


