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Abstract. We prove the wellposedness of a nonlinear hidden-memory variable-order

fractional stochastic differential equation driven by a multiplicative white noise, in which

the hidden-memory type variable order describes the memory of a fractional order. We

then present a Euler-Maruyama scheme for the proposed model and prove its strong

convergence rate. Numerical experiments are performed to substantiate the theoretical

results.
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1. Introduction

Stochastic differential equations (SDEs) provide a prominent modeling tool for many

stochastic phenomena in sciences and engineering like biology, physics, chemistry and fi-

nance [6–8, 11, 15, 16, 19, 20, 24, 32]. In the processes containing nonlocal or memory

effects, fractional derivatives provide a better description than integer-order derivatives

do, which leads to the fractional SDEs (fSDEs). However, there is a large class of physical,

biological and physiological diffusion phenomena that relate processes exhibiting acceler-

ating or decelerating diffusion behaviors that cannot be characterized by the constant-order

fractional diffusion equations. Typical features of these phenomena are that they are com-

plex to analysis and the diffusion behavior depends on the time evolution, space variation
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or even system parameters. Since the orders of fractional derivatives in fSDEs are closely

related to the fractal dimension of the media determined via the Hurst index [22], the vari-

able fractional order derivatives are introduced to accommodate the structure change of the

surroundings, which in turn leads to the variable-order (VO) fSDEs [12–14,31,33,36,37].

Works [9, 17, 27] introduced the space dependent VO into differential equations under

the assumption that the probability density function is space dependent in the continu-

ous time rand walk, which indicates that the memory rate depends on the space location

in the considered system. Papers [27–29] proved that the mean square displacement is

〈x2(t)〉 ∝ tα(t), where α(t) is the order of the fractional diffusion equation. Measure-

ment data also show that the diffusion behavior changing with the time evolution can be

modeled by a time dependent VO fractional model. Thereby, it is more reasonable to inves-

tigate the VO fractional equations, and so further theoretical and numerical investigations

of variable-order fSDEs are required for describing more complicated stochastic diffusion

process.

Motivated by the preceding discussions, we study the following nonlinear Caputo frac-

tional SDE with a hidden-memory variable order:

du=
�

−λ C
0

D
α(t)
t u+ f (t,u)

�

d t + b(t,u)dW, t ∈ (0, T ], u(0) = u0. (1.1)

Here λ≥ 0, 0≤ α(t) ≤ α∗ ≤ 1/2, and the hidden-memory variable-order fractional differ-

ential operator C
0

D
α(t)
t is defined in terms of the corresponding fractional integral via the

Gamma function Γ [21,28,34,35]
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α(t)
t g(t) := 0I

1−α(t)
t g′(t), 0 I

1−α(t)
t g(t) :=

∫ t

0

(t − s)−α(s)

Γ (1−α(s))
g(s)ds. (1.2)

Note that in the fractional integral, the power α assumes its historical state at the historical

time instant s, which represents the memory of the order history and is named as hidden

memory in order to distinguish it from the fading memory property of the fractional oper-

ators [27,28].

FSDEs have attracted extensive attentions mathematically and numerically [1,3–5,10,

23,25,26,36], while the corresponding investigations for variable-order FSDEs are meager.

In a very recent work the well-posedness of a variable-order FSDE was analyzed, in which

the variable-order fractional derivative is defined by (1.2) with α(s) replaced by α(t). Note

that in such definition, the kernel becomes (t−s)−α(t)/Γ (1−α(t)), which can be integrated

into a close-form expression that significantly facilitates the mathematical analysis. How-

ever, the definition (1.2) does not enjoy this benefit, which shows the salient feature of

the hidden-memory variable-order fractional problems and complicates the corresponding

mathematical and numerical analysis.

We aim to prove the existence and uniqueness of the strong solution for (1.1), based on

which we propose a Euler-Maruyama approximation and prove its optimal error estimates.

The rest of this paper is organized as follows. In Section 2 we present preliminaries and the

reformulation of the problem be used subsequently. In Section 3 we prove the wellposed-

ness and moment estimate of the governing equation (1.1). In Section 4 we establish the


