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Abstract. A numerical scheme for the nonlinear fractional-order Cable equation with

Riemann-Liouville fractional derivatives is constructed. Using finite difference discretiza-

tions in the time direction, we obtain a semi-discrete scheme. Applying spectral Galerkin

discretizations in space direction to the equations of the semi-discrete systems, we con-

struct a fully discrete method. The stability and errors of the methods are studied. Two

numerical examples verify the theoretical results.
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1. Introduction

Fractional models provide a more detailed and comprehensive description of the mem-

ory, heredity, and non-locality. Therefore, fractional calculus is widely used in viscoelas-

ticity and non-Newtonian fluid mechanics [28], fractional heat conduction [23], fractional

Brownian models with stochastic volatility [20], and physics [6]. Theory and application

of fractional calculus has gradually become a hot new issue [22].

In particular, recently the time fractional diffusion equations (TFDE) and fractional

wave equations have been intensively studied both theoretically and numerically. Thus

Schneider and Wyss [24,31] analyzed fractional diffusion wave equations, whereas Sun et

al. [27] investigated a fully discrete difference scheme for their solution. Liu et al. [15] stud-

ied the stability and convergence of discrete non-Markovian random walk approximations

of TFDE obtained by a finite difference method. Langlands and Henry [7] established an
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implicit numerical scheme based on finite difference approximations for time fractional dif-

fusion equations with the Riemann-Liouville fractional derivative. Sun et al. [26] used the

Alikhanov’s work [1], in order to study the stability and convergence of the discrete scheme

for fractional wave equations. A new second-order midpoint approximation formula for the

Riemann-Liouville derivative has been suggested in [3], and two implicit numerical meth-

ods for the fractional cable equation are considered in [16]. For time-fractional parabolic

equations with nonsmooth solutions, Liu et al. [10] developed a numerical method based on

thee change of variable s = tβ and established an optimal error estimate of the L1 finite dif-

ference method. The unconditional stability and convergence of the fast difference scheme

for a second-order multi-term time-fractional sub-diffusion problem are proved in [5].

Non-linear fractional equations and numerical methods of their solution are also stud-

ied. Thus high order methods for nonlinear fractional ordinary differential equations are

developed in [12]. Liu et al. [17, 18] considered a finite element method combined with

a finite difference scheme for a fourth-order nonlinear time fractional reaction-diffusion

problem. Li et al. [9] considered L1-Galerkin FEMs for time-fractional nonlinear parabolic

problems, whereas Duo and Zhang [4] studied numerical methods for the fractional nonlin-

ear Schrödinger equation. The stability and convergence of an implicit numerical method

for nonlinear fractional diffusion equations are analyzed in [13, 37], and finite element

approximations for the nonlinear fractional Cable equation are discussed in [19, 29]. Li

and Yi [8] constructed a discrete scheme for a two-dimensional nonlinear time-fractional

subdiffusion equation, and Zhang and Jiang [36] developed an unconditional convergent

numerical scheme for a two-dimensional nonlinear time fractional diffusion-wave equa-

tion. A compact difference scheme for nonlinear fourth order fractional sub-diffusion wave

equation has been proposed in [21], and a linearised three-point combined compact dif-

ference method with weighted approximation for nonlinear time fractional Klein-Gordon

equations is developed [35].

Spectral methods are important numerical tools in fractional differential equations [25].

Thus the spectral-collocation method for fractional integro-differential equations is studied

in [33, 34]. Chen and Yang [32] considered a numerical method for nonlinear Volterra

integro-differential equations. Wei and Chen [30] studied a Jacobi spectral approach to

second kind multidimensional linear Volterra integral equations. Xu and Li [11] considered

finite difference-spectral discretizations for the time fractional diffusion equation. A finite

difference-spectral method for the fractional Cable equation is investigated in [14].

The fractional Cable equation is used in modelling of anomalous electro-diffusion in

nerve cells. In the present work, we develop a numerical scheme for the nonlinear time

fractional cable equation which is based on finite difference approximations in the time

direction and a Galerkin spectral method in the space direction. The stability and the errors

of the corresponding semi-discrete scheme are proved. Besides, we consider a fully discrete

scheme and determine the related errors. Numerical examples verify the theoretical results.

This paper is organized as follows. In Section 2, we use finite difference approximations

in the time direction and establish a semi-discrete scheme. After that, we employ Galerkin

spectral approximations for the space direction and obtain a fully discrete scheme. Section 3

is devoted to the stability of the semi-discrete problem. The error analysis is presented in


