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Abstract. A neural network method for fractional order diffusion equations with inte-

gral fractional Laplacian is studied. We employ the Ritz formulation for the correspond-

ing fractional equation and then derive an approximate solution of an optimization prob-

lem in the function class of neural network sets. Connecting the neural network sets with

weighted Sobolev spaces, we prove the convergence and establish error estimates of the

neural network method in the energy norm. To verify the theoretical results, we carry

out numerical experiments and report their outcome.
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1. Introduction

Fractional Laplacian operator [8, 14, 34] has been employed in various nonlocal mod-

els, including turbulence [6, 21, 22], quantum mechanics [26, 33], finances [12], statis-

tical physics [23], phase transitions [4, 5], material sciences [7], image processing [24],

geophysics [13], acoustic wave propagation in heterogeneous media [45] and anomalous

diffusion in porous media [35, 36]. Due to versatile applications and the ability to cap-

ture anomalous diffusion and model complex physical phenomena with long range inter-

action [16,39,42], many numerical methods have been developed — e.g. finite difference-

quadrature methods [18,19,30,32,37], finite element methods (FEM) [1,3,15,41], spectral

methods [28,29], mesh-free pseudospectral methods [10,40], the isogeometric collocation

method [43], and deep learning method [38]. We refer the readers to [8,14,34] for a re-

view of many definitions of fractional Laplacian and their numerical methods.

In this paper, we consider an n-dimensional fractional diffusion equation with Dirichlet

boundary condition — viz.

(−∆)
α
2 u= f (x), x ∈ Ω, α ∈ (0,2), (1.1)

u(x) = 0, x ∈ Ωc, (1.2)
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whereΩ andΩc are a domain and its complement inRn, n= 1,2,3, f (x) is a given function,

and the fractional Laplacian is defined by

(−∆)
α
2 u(x) = cn,α

∫

Rn

u(x)− u(y)

|x − y|n+α
d y, cn,α =

2αΓ ((α+ n)/2)

π
n
2 |Γ (−α/2)|

. (1.3)

The essential difficulties for the fractional diffusion equations are twofold:

(1) The most of the numerical methods mentioned exhibit a low convergence order and

accuracy because the solution has a singularity near the boundary inherited from the

kernel.

(2) For α ∈ (1,2), the complexity caused by the singular integral makes the correspond-

ing discretization challenging.

For special domains such as a disk in two-dimensional space or a ball in three-dimensional

space, one can construct very accurate high-order methods based on pseudo-eigenfunctions

of the fractional Laplacian operator [28]. For general domains any other higher order

methods are not known. The FEM proposed in [1] on a graded mesh can capture the

singularity near the boundary and recover the optimal convergence order for the piece-

wise linear polynomials. Nonetheless, the assembling the stiffness matrix is expensive,

and it is still under investigation for high-order polynomials. Therefore, here we turn our

attention to the current state-of-the-art neural network methods (NNMs). Neural network

methods have gained increased attention recently in the science and engineering [20,44].

The methods are powerful in approximation and have huge expressive power. Although

many numerical methods use meshes, which are often constructed in prior or posterior in

an adaptive way, they can be understood and classified into mesh-free methods. This make

it easy to capture boundary or corner singularities and recover boundary and transition

layers and the shocks encountered in hyperbolic problems. Their success for the integer-

order problems [20, 44] naturally motives us to apply the methods to the model problem

(1.1)-(1.2).

Compared to extensive research on integer-order local problems, there are limited re-

search on neural networks for fractional counterparts incorporating nonlocalities. Pang et

al. [38] applied the so-called FPINN method to a advection-diffusion equation with the frac-

tional Laplacian. They showed numerical convergence of the method without theoretical

analysis. Combining with the Monte Carlo numerical integration, Guo et al. [27] extended

the FPINN method to high-dimensional forward and inverse problems. We remark that

although their least-squares formulation works well for α ∈ (0,1), it experiences problems

if α ∈ (1,2). Since the solution does not have enough regularity to use the least-squares

form, numerical solution for α ∈ (1,2) was not reported in [38]. To resolve this issue we

use the energy formulation of the model problem (1.1)-(1.2). Note that it is called the deep

Ritz method in [20].

The main goal of this paper is the development of a more accurate neural network

method for the model problem. The neural network method is set up for the energy form


