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Abstract. An adaptive multigrid method for semilinear elliptic equations based on adap-

tive multigrid methods and on multilevel correction methods is developed. The solution

of a semilinear problem is reduced to a series of linearised elliptic equations on the se-

quence of adaptive finite element spaces and semilinear elliptic problems on a very low

dimensional space. The corresponding linear elliptic equations are solved by an adaptive

multigrid method. The convergence and optimal complexity of the algorithm is proved

and illustrating numerical examples are provided. The method requires only the Lips-

chitz continuity of the nonlinear term. This approach can be extended to other nonlinear

problems, including Navier-Stokes problems and phase field models.
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1. Introduction

This paper focuses on the adaptive finite element method (AFEM) for semilinear elliptic

equations widely used in physics and scientific computing. AFEM was proposed by Babus̆ka

and his collaborators in [2,3]. The corresponding theoretical analysis is well-developed —

e.g. Dörfler [14] introduced a marking strategy and proved strict energy error reduction for

the Laplace problem in the case of fine initial meshes. Morin et al. [26] considered interior

node property and data oscillation and proved that there is no strict energy error reduction

in general. Mekchay and Nochetto [25] obtained a similar result for second order elliptic

operators by developing a total error concept. The standard AFEM has been later examined

by Cascon et al. [8]. We note that the AFEM is also successfully applied to nonlinear elliptic

equations — cf. [16, 17]. For more information about the AFEM the reader can consult

Refs. [12,27,29]. Further development of adaptive finite element methods led to adaptive
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multigrid methods, which turns out to be fully compatible with multigrid structures. Thus,

Brandt [4,5] introduced a multilevel adaptive technique, McCormick [23] developed a fast

adaptive composite grid method (FAC). Besides, various topics related to adaptive multigrid

methods have been discussed in Refs. [7,10,15,24,30,31,33].

Xie et al. [9, 19–21, 32] developed a multilevel correction technique and constructed

an optimal algorithm for eigenvalue problems. The main idea of the multilevel correction

consists in transforming eigenvalue problems into boundary value problems via multilevel

finite element spaces with subsequent correction of approximate solutions by solving a low

dimensional eigenvalue problem. This allows to avoid solving eigenvalue problems in fine

spaces and improve the efficiency of the numerical approach.

The aim of this work is to construct a numerical method for semilinear elliptic equa-

tions, which would combine the advantages of adaptive finite element and adaptive multi-

grid methods with the multilevel correction method. In particular, the solution of the said

equations is constructed via solutions of associated linearised elliptic equations on a series

of adaptively refined partitions and a small scale semilinear elliptic equation. The dimen-

sion of the corresponding semilinear equation is fixed during the whole adaptive process

and the solving time can be ignored if the size of the mesh becomes sufficiently small. In

addition, for the corresponding linearised elliptic problems, multigrid iteration steps are

performed only on newly refined elements and their neighbors — cf. [4, 15, 30, 31] and

references therein. To investigate the convergence and complexity of the method we adopt

the approach in [8,12,16]. However, in contrast to the existing adaptive methods for semi-

linear elliptic equations [13], our approach requires only the Lipschitz continuity of the

nonlinear term instead of the boundedness of its second derivatives. Another advantage of

the method is that it can be applied to linear and nonlinear eigenvalue problems.

The rest of the paper is arranged as follows. In Section 2, we recall basic notation

and standard AFEM for the second order linear elliptic equations. In Section 3, we intro-

duce an adaptive multigrid method for semilinear elliptic equations. The convergence and

complexity of the method are studied in Section 4. Section 5 includes the results of numer-

ical experiments, which demonstrate the efficiency of the method and confirm theoretical

analysis. Finally, concluding remarks are given in Section 6.

2. Adaptive Finite Element Method for Linear Elliptic Equations

Let us start with notation and useful results in adaptive finite element methods for the

second order linear elliptic equations. We denote by C generic positive constants which may

be different at different occurrences. The symbols ®, ¦ and ≈ are, respectively, referred

to the inequalities x1 ≤ C1 y1, x2 ≥ c2 y2 and c3 x3 ≤ y3 ≤ C3 x3 with constants C1, c2, c3,

C3 independent of the mesh size. If Ω ⊂ Rd , d = 2,3 is a bounded domain with the

Lipschitz boundary ∂Ω, we use the standard notation W s,p(Ω) for Sobolev spaces and the

corresponding norms ‖ · ‖s,p,Ω and seminorms | · |s,p,Ω — cf. [1], and if p = 2, we write

Hs(Ω) =W s,2(Ω), H1
0
(Ω) =
�

v ∈ H1(Ω) : v|∂Ω = 0
	

,


