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Abstract. Two implicit finite difference schemes combined with the Alikhanov’s L2-1σ-

formula are applied to one- and two-dimensional time fractional reaction-diffusion equa-

tions with variable coefficients and time drift term. The unconditional stability and L2-

convergence of the methods are established. It is shown that the convergence order

of the methods is equal to 2 both in time and space. Numerical experiments confirm

the theoretical results. Moreover, since the arising linear systems can be ill-conditioned,

three preconditioned iterative methods are employed.
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1. Introduction

In the past decades, fractional calculus received considerable attention because of nu-

merous applications such as modeling of HIV infection [7], human heart [43], entropy

[39], hydrology [2], anomalous diffusion in complex systems [20] and in some other

fields [3, 19, 40]. Fractional diffusion equations (FDEs) represent an important tool and

are actively used in such studies — cf. [4, 8, 11, 14, 16, 17, 21, 22, 31, 53] and references

therein.

Let us note that at any given point, the solutions of equations with fractional oper-

ators depend on their behavior in the entire domain — i.e. the fractional operators are
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nonlocal. Therefore, FDEs are more suited for description of materials and processes with

memory than the usual integer-order equations. On the other hand, the nonlocality causes

various problems — e.g. analytical solutions of FDEs are known only in certain special

cases [38]. Therefore, the development of efficient numerical methods for the equations

mentioned becomes a fundamental task. Up to now, a variety of numerical methods for

FDEs have been proposed — e.g. finite difference method [4,11,14,15,17,51], finite ele-

ment method [24–26], collocation method [31], meshless method [6] and spectral method

[32]. It is worth noting that the finite difference schemes are one of the most popular ap-

proaches, especially for space and time FDEs. Thus Meerschaert and Tadjeran [33] applied

an implicit Euler method based on the standard Grünwald-Letnikov formula to discretise

space-fractional advection-dispersion equations with the first-order accuracy. However, the

corresponding implicit difference scheme (IDS) turns out to be unstable and in order to

overcome instability, they introduced an unconditionally stable shifted Grünwald-Letnikov

formula. Later on, second-order approximations of space FDEs have been considered. In

particular, Sousa and Li [45] derived an unconditionally stable weighted average finite dif-

ference formula for a one-dimensional fractional differential equation (FDE). It converges

with the rate O (τ + h2), where τ and h are time step and mesh sizes, respectively. Tian

et al. [47] proposed a class of second-order approximations, termed as weighted and shifted

Grünwald difference (WSGD) operators and used to solve two-sided one-dimensional space

FDEs. The convergence rate of this implicit difference scheme is O (τ2 + h2). Adopting the

same ideas and utilising the quasi-compact numerical technique, Zhou et al. [52] developed

a numerical approximate scheme with the convergence rate O (τ2+h3). Subsequently, Hao

et al. [18] applied a new fourth-order difference approximation, using weighted average

of the shifted Grünwald formulae and compact numerical technique, to a two-sided one-

dimensional space FDE. They showed that this quasi-compact difference scheme is uncon-

ditionally stable. Moreover, it converges in the L2-norm with the optimal order O (τ2+h4).

On the other hand, for the time FDEs, various difference schemes have been initially ob-

tained using the L1-formula [9, 12, 34]. Later on, Gao et al. [13] applied the fractional

numerical differentiation L1-2-formula to time-fractional sub-diffusion equations and ob-

tained a solution with the accuracy O (τ3−α + h2), 0 < α < 1. Alikhanov [1] proposed

a modified scheme with the second-order accuracy. The stability of the scheme was also

proven and numerical examples suggest that it approximates the α-order Caputo fractional

derivative with the second-order accuracy. Yan et al. [48] used this modified scheme and

developed a fast high-order accurate numerical method (named F L2-1σ) for speedy evalu-

ation of the Caputo fractional derivative. The scheme substantially reduces the storage and

computational cost. Nevertheless, the results concerning numerical methods for space-time

FDEs are still scarce — cf. [14,28,29,44] and references therein. Here we apply a second-

order implicit difference scheme to the initial-boundary value problem for the following

one-dimensional time fractional reaction-diffusion equation (TFRDE) with variable coeffi-

cients and a time drift term:

∂ u(x , t)

∂ t
+ Dα0,tu(x , t) =L u(x , t) + f (x , t), 0≤ x ≤ L, 0≤ t ≤ T,

u(x , 0) = u0(x), 0≤ x ≤ L, u(0, t) = φ1(t), u(L, t) = φ2(t), 0≤ t ≤ T,

(1.1)


