
East Asian Journal on Applied Mathematics Vol. 11, No. 1, pp. 93-118
doi: 10.4208/ eajam.100520.040820 February 2021

Modeling and Simulation of a Ternary System for
Macromolecular Microsphere Composite Hydrogels

Guanghua Ji, Yuqi Yang� and Hui Zhang

Laboratory of Mathematics and Complex Systems (Ministry ofEducation), School
of Mathematical Sciences, Beijing Normal University, Beijing 100875, P.R. China.

Received 10 May 2020; Accepted (in revised version) 4 August2020.

Abstract. In this paper, we study a ternary system for macromolecular microsphere
composite (MMC) hydrogels. Assuming that the graft chains are distributed randomly
around the macromolecular microspheres, a phase transition model was constructed.
The stabilised-scalar auxiliary variable (S-SAV) approach is used to present a �rst-order
energy stable scheme for solving the nonlinear system. Somenumerical experiments
are carried out to show the accuracy of the scheme, includingthe mass conservation of
the volume fractions, the decrease in the modi�ed energy, and the in�uence of different
parameters.
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1. Introduction

The macromolecular microsphere composite (MMC) hydrogel,proposed by Huanget
al. [25] in 2010, is a new type of hydrogel. Later on, various materials have been used to
synthesise the MMC hydrogel in a similar way[21,23,40,45,66] . The formation process is
described as follows: evenly add monomers to the irradiatedmacromolecular microsphere
(MMS) emulsion, and heat the mixture. The monomers will chemically graft onto the
surface of the MMSs and grow into grafted polymer chains. It is possible for a polymer
chain to graft onto another MMS or another polymer chain, so the MMSs can be joined
by polymer chains. If the length of the polymer chain becomeslarger than the distance
between two MMSs, the chain entangles. The mixture �nally tr ansforms into a solid gel,
the microstructure of which is shown in Fig. 1. Because of thechemical grafting and the
entangled polymer chains, the MMC hydrogel has a well-de�ned network structure and
very high mechanical strength [26,46] . This led to wide application of MMC hydrogels in
biomedical and industrial areas [21,23,25,40,66] . However, here we mainly focus on the
method for simulating the phase transition of MMC hydrogels.
� Corresponding author. Email addresses: ghji@bnu.edu.cn (G. Ji), 201721130050@mail.bnu.edu.cn
(Y. Yang), hzhang@bnu.edu.cn(H. Zhang)

http: // www.global-sci.org/ eajam 93 c
 2021 Global-Science Press



94 G. Ji, Y. Yang and H. Zhang

Figure 1: The microstructure of the MMC hydrogel.

The time-dependent Ginzburg-Landau (TDGL) mesoscale simulation method is based
on the Cahn-Hilliard-Cook nonlinear diffusion equation an d is used in the modelling of the
phase transition of the polymer blends [19] . The method connects the rate of change of
one or more spatiotemporal order parameters in time with the derivatives of a free energy,
which is a functional of these order parameters. In particular, for incompressible binary
polymer blends, the following equation is used:

@ �(x, t )

@t
= r � Dr

� F[ � (x, t )]

�� (x, t )
,

where � is the spatiotemporal order parameter, D the mobility, and

F[ � ] =

Z

dr
¦

f [ � ] + � (� )jr � j2
©

the Ginzburg-Landau type free energy with the variable interface coef�cient � (� ) and the
Flory-Huggins free energy of mixing f [ � ] .

In recent years, the TDGL method has been used to simulate thephase transitions of
MMC hydrogels in binary systems. Zhaiet al. [61] introduced a reticular free energy to
describe the network structure of MMC hydrogels, derived a binary MMC-TDGL equation,
and used a spectral method for its solution. Liet al. [29,30] solved the binary MMC-TDGL
equation by a semi-implicit difference scheme and employeda �nite difference method in
combination with a convex splitting technique for the energy functional. Xu et al. [51]
presented a stabilised semi-implicit scheme for the binaryMMC-TDGL equation. Yang[53]
employed the invariant energy quadratisation (IEQ) method to the phase �eld model for
homopolymer blends (PF-HB). Thus the TDGL method is suitable for simulating the phase
transition of MMC hydrogels in a binary system. Nevertheless, there are only a few works
investigating the corresponding methods for ternary systems.

In binary systems, an important assumption is that the number of graft chains around
an MMS is proportional to the perimeter [29, 30, 51, 61] . That is, the volume fraction of
the polymer chains is proportional to the volume fraction of the MMSs. We can view MMSs
and polymer chains as one component and water as the other.
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In this paper, we study more practical systems where graft chains are randomly dis-
tributed around MMSs — i.e. polymer chains, MMSs and water are viewed as the compo-
nents of a ternary phase transition model of an MMC hydrogel.

To simulate the phase transition of the MMC hydrogel in a ternary system, we have
two main tasks. First, using the three-component Cahn-Hilliard equations combined with
the Ginzburg-Landau free energy, we develop ternary MMC-TDGL equations. In order to
describe the reticular structure of the MMC hydrogel, we replace the Flory-Huggins energy
with the reticular energy, and the reticular energy is calculated similar to [61] . Second, we
solve the ternary MMC-TDGL equations. This is the main challenge because two coupled
fourth-order nonlinear parabolic partial differential eq uations have to be solved.

There are various approaches to nonlinear equations. Usually, one writes the free en-
ergy functional as a sum of linear and nonlinear terms — viz.

F[ � ] =
1
2

Z

� L � dx + F1[ � ] ,

where L is a symmetric non-negative linear operator andF1 a nonlinear term with lower-
order derivatives than L . Besides, in the binary system,� is a scalar but it is a vector in
the ternary system. The linear term is usually treated implicitly, so the key is to �gure out
how to deal with the nonlinear term, since different approac hes treat the nonlinear term
differently. We now provide a brief introduction to numeric al methods for three-component
Cahn-Hilliard equations.

The convex splitting method was introduced in [15,16] . In this method the free energy
functional is represented as the difference of two convex functionals — i.e. F = Fc � Fe,
where both Fc and Fe are convex. The functional Fc is treated implicitly, and Fe explicitly.
One can easily show that the convex splitting scheme unconditionally satis�es the discrete
energy law. However, the nonlinear equations have to be solved at each time step since,
usually, the implicit term Fc is nonlinear — cf. Refs. [1,2,6,7,20,24,33,42,43,47] .

In the stabilisation method, the nonlinear term is treated explicitly and in order to
avoid strict time step constraints, a linear stabiliser is added [18,28,37,38,69] . This is an
ef�cient method since, at any time step, only linear equatio ns have to be solved. However,
the proof of the unconditional energy stability requires th e boundedness of the second-
order derivative of the energy functional. In many cases, this condition is too strong, so
that the energy functional is usually truncated to satisfy it [4,32] .

The invariant energy quadratisation (IEQ) method, proposed by Yang [53] , has been
applied to different phase �eld models [5, 12, 20, 49, 54–60, 67] . In this approach, all the
nonlinear terms are treated implicitly and the free energy has to be bounded from below.
Although for the three-component Cahn-Hilliard equations a linear scheme can be con-
structed, it leads to a coupled system with variable coef�cients changing at each time step.
The modi�ed energy is unconditionally stable, but the stabi lity of the initial energy cannot
be proven.

The scalar auxiliary variable (SAV) approach was proposed by Shenet al. [36] and later
on Shen and Hu[35] considered higher-order SAV schemes. The nonlinear term istreated
implicitly and it has to be bounded from below. A linear uncon ditionally energy stable
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scheme can be easily constructed and the equations are decoupled. Nevertheless, only the
modi�ed energy is unconditionally stable but not the origin al one. More applications can
be found in [27,68] and the convergence and error analysis are presented in[31,34,44] .

A new Lagrange multiplier method has been recently proposedby Chenget al. [11] . The
nonlinear term is treated explicitly, but an implicit scala r auxiliary function is added. The
method does not require the boundedness of the corresponding free energy functional or
the nonlinear term from below and the original energy is unconditionally stable. However,
for the three-component Cahn-Hilliard equations, four lin ear and two nonlinear equations
have to be solved at each time step.

Recently, stabilisation terms are added to other numericalschemes in order to enhance
their stability, so that large time steps are allowed while keeping the required accuracy.
A Crank-Nicolson type scheme combined with convex splitting and stabilisation is used
in [41, 48] . The second-order backward differentiation formula (BDF) �nite difference
schemes in[8–10, 17, 52] are also based on a convex splitting and stabilisation. For the
anisotropic Cahn-Hilliard equation, the stabilisation terms used in IEQ approach[50] and
SAV approach[3] aim to suppress non-physical spatial oscillations caused by the strong
anisotropy. Besides, the stabilised-IEQ (S-IEQ) approachis considered in [62, 63] and
stabilised-SAV (S-SAV) approach in[64,65] .

We used the SAV approach to simulate the ternary phase transition model of an MMC
hydrogel. However, it leads to blow-up since the higher derivatives in the free energy
functional are nonlinear and have to be treated explicitly. Therefore, a stabilisation term is
added to the scheme i.e. an S-SAV approach is used.

The rest of the paper is organised as follows. In Section 2, weintroduce a phase transi-
tion model for the ternary MMC hydrogels. In Section 3, a linear, �rst-order, unconditionally
energy stable scheme is used to solve the nonlinear system from Section 2. In Section 4,
we show the results of numerical simulations. Our conclusions and further discussion are
in Section 5.

2. A Phase Transition Model For MMC Hydrogels

We consider a system consisting of MMSs, polymer chains and water. At the beginning of
the synthesis, MMSs and monomers distribute evenly in water, so the initial volume fraction
of MMSs, polymer chains and water, respectively, denoted by� m, � p and � w, are uniformly
distributed in space. To construct a ternary phase transition model, we �rst establish TDGL
equations in the ternary system.

2.1. TDGL method

The time-dependent Ginzburg-Landau (TDGL) mesoscale simulation method is widely
used for simulating phase transitions in multicomponent polymer blends. For an n-compo-
nent system, the method begins with a continuity equation for each component i of the
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mixture [19] , i.e.
@ �i (x, t )

@t
= �r � ji (x, t ),

where � i (x, t ) is the spatiotemporal concentration of component i such that

� 1 + � 2 + � � � + � n = 1

and ji (x, t ) is the mass current of the componenti related to the chemical potential � j by
the Fick's law

ji (x, t ) = �
n� 1X

j= 1

Di j r � j

with Di j denoting the mobility of component i due to j . The chemical potential � j is ther-
modynamically related to the free energy functional F[ � 1(x, t ), � 2(x, t ), . . . , � n� 1(x, t )] by
� j = � F=�� j .

Since the MMC hydrogel is composed of MMSs, polymer chains and water, we can
describe the structure of the ternary system by the following TDGL equations:

@ �1(x, t )

@t
= r �

•
D1r

� F[ � 1(x, t ), � 2(x, t )]

�� 1(x, t )

‹
,

@ �2(x, t )

@t
= r �

•
D2r

� F[ � 1(x, t ), � 2(x, t )]

�� 2(x, t )

‹
,

� 3 = 1 � � 1 � � 2.

We model the free energy functional in the form of the Ginzburg-Landau type energy
functional, incorporating the interface gradient terms of de-Gennes

F[ � 1, � 2]

kBT
=

Z

dx

¨
f [ � 1, � 2]

kBT
+

1
36

3X

i= 1

a2
i

� i
jr � i j

2

«

, (2.1)

where ai is the statistical segment length of component, f [ � 1, � 2] the Flory-Huggins free
energy of mixing, and (1=36)

P 3
i= 1(a2

i =� i )jr � i j
2 the energy of the interface i , cf. [13,14,

39] . However, since the MMC hydrogel has a well-de�ned network structure, we have to
the reticular free energy density f [ � 1, � 2] in order to replace the Flory-Huggins free energy
of mixing.

2.2. Reticular free energy

The free energy density f is related to the mixing enthalpy H, the temperature T, and
the mixing entropy Sby f = H� TS. The de�nition of the variables used in the forthcoming
calculations is given in Table 1.

The mixing entropy H,

H = � kBT V
�
� mp� m� p + � mw� m� w + � pw� p� w

�
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Table 1: De�nition of variables.

Variables De�nitions

nm the number of the macromolecular microspheres (MMSs)

np the number of the segments

nw the number of the solvent (water) molecules

M the lattice number that one MMS occupies

N the polymerization degree of the polymer chains

V the total lattice number of the system occupies,V = Mnm + np + nw

� m the volume fraction of the MMS, � m = Mnm=V

� p the volume fraction of the polymer chains, � p = np=V

� w the volume fraction of the solvent (water) molecules, � s = ns=V

represents the interaction between any two components and� mp, � mw, � pw are, respec-
tively, the interaction parameters between MMS and polymer, MMS and water, polymer
and water.

Then, the mixing entropy S is calculated by using the Boltzmann entropy theorem,
Flory-Huggins lattice theory and the statistical thermodynamic method [22] . The Boltz-
mann entropy theorem reads as follows.

Theorem 2.1. The mixing entropy S and microscopic con�guration number of the system

are relates as

S = kB ln 
 ,

where kB is the Boltzmann constant.

Taking into account the Flory-Huggins lattice theory, we make the following assump-
tions for our model:

� Each solvent molecule occupies a lattice, and the solvent molecules can replace each
other.

� Each MMS occupies M lattices.

� All the polymer chains have the same polymerization degreeN, and each polymer
molecule occupies N connected lattices. The polymer chainsare completely �exible,
and all the con�gurations have equivalent energy.

� Each MMS has the same properties and they are independent of each other, which is
the same as the polymer chains.

� Both ends of all the polymer chains are grafted onto the MMS surfaces.

For convenience, we restrict ourselves to two dimensions. The three-dimensional case
can be considered analogously. MMSs and polymer chains cannot be distributed randomly
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because polymer chains are distributed among the MMSs. Therefore, using the statistical
thermodynamic method, we can obtain the following microscopic con�guration numbers
of MMSs, polymer chains, and water:


 m =

 
V

� (
q

M
� + N

2 )2nm

! nm

,


 p =

 
V

(2
q

M
� + N)

np

N

! np=N

,


 w =
•

V
nw

‹ nw

.

The mixing entropy S of the system can be obtained by the Boltzmann entropy theorem, so
that

S = � kBV

�
� m

M
ln

•
�� m

M

‹
+

� p

N
ln

�
� � p

N

�

+ � w ln � w

�

,

where

� = �

‚v
t M

�
+

N
2

Œ2

, � = 2

v
t M

�
+ N.

Replacing the subscriptsm, p, w with 1,2,3, we write the reticular free energy density in
the form

f = kBT V

�
� 1

M
ln

•
�� 1

M

‹
+

� 2

N
ln

•
� � 2

N

‹
+ � 3 ln � 3 + � 12� 1� 2

+ � 13� 1� 3 + � 23� 2� 3

�

. (2.2)

2.3. Ternary MMC-TDGL equations

The above calculations lead to the following ternary MMC-TDGL equations with ( x, y) 2

 = [ 0, L] 2:

@ �1
@t

= D1�
� F
�� 1

, (2.3a)

@ �2
@t

= D2�
� F
�� 2

, (2.3b)

� 3 = 1 � � 1 � � 2, (2.3c)

where � 1 and � 2 are equipped with periodic boundary conditions. The Eqs. (2.3a)-(2.3c)
have the following property.
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Theorem 2.2. In the ternary MMC-TDGL equations, the volume fractions� i , i = 1,2 are
mass-conservative — i.e.,

Z




� i ( x, y, t )d xd y =

Z




� i0( x, y, t )d xd y for all t > 0.

Proof. Integrating the Eqs. (2.3a) and (2.3b) over 
 and using the Gaussian formula
yields

d
d t

Z




� i d xd y =

Z




@ �i
@t

d xd y = Di

Z




�
� F
�� i

d xd y = Di

Z




r
� F
�� i

� ndS.

Since � F=�� i is periodic with respect to x and y, we obtain

d
d t

Z




� i d xd y = 0.

Substituting the reticular free energy density (2.2) into t he Eq. (2.1) and using (2.3c),
we write the free energy functional F[ � 1, � 2] as

F[ � 1, � 2] =

Z

dx

�
� 1

M
ln

•
�� 1

M

‹
+

� 2

N
ln

•
� � 2

N

‹
+ ( 1 � � 1 � � 2) ln(1 � � 1 � � 2)

+ � 12� 1� 2 + � 13� 1(1 � � 1 � � 2) + � 23� 2(1 � � 1 � � 2)

+
a2

1

36� 1
jr � 1j2 +

a2
2

36� 2
jr � 2j2 +

a2
3

36(1 � � 1 � � 2)
jr (1 � � 1 � � 2)j2

�

.

Theorem 2.3. The energy functional F[ � 1, � 2] of the system(2.3a) -(2.3c) decreases with
time — i.e.

dF
d t

� 0.

Proof. Multiplying (2.3a) and (2.3b), respectively, by @ �1=@t and @ �2=@t , summing
the resulting equations and integrating it over 
 gives

dF
d t

=
2X

i= 1

Z
� F
�� i

@ �i
@t

dx = �
2X

i= 1

Di

Z �
�
�
� r

� F
�� i

�
�
�
�

2

� 0.

Note that we used Green's formula and the boundary conditions.

3. Numerical Scheme

To obtain the solution of the MMC-TDGL equations (2.3a)-(2.3c), we have to solve
two coupled fourth-order nonlinear parabolic partial diff erential equations. Thus, we use
the scalar auxiliary variable (SAV) approach proposed by Shen [35, 36] . It is an ef�cient
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approach when dealing with high-order nonlinear equations and with the equation decou-
pling. For this, we write the free energy functional as the sum

F[ � ] =
1
2

Z

� L � dr + F1[ � ] ,

where L is a symmetric non-negative linear operator and F1 a nonlinear term. We deal
with the linear term implicitly and with the nonlinear term e xplicitly. However, since the
highest-order term in the free energy functional of the ternary MMC-TDGL equations is not
linear, all terms in the free energy functional have to be treated explicitly. In our simula-
tions, the fully explicit scheme produces divergent numerical solutions. Therefore, a linear
stabiliser is added to the SAV approach. By using the stabilised-scalar auxiliary variable (S-
SAV) approach, we obtain an ef�cient unconditional stable energy scheme for high-order
nonlinear equations.

Introducing the scalar auxiliary variable r ( t ) =
p

F[ � 1, � 2] , we write the system (2.3a)-
(2.3c) as

@ �i
@t

= Di � � i , (3.1a)

� i =
r

p
F[ � 1, � 2]

Ui , (3.1b)

r t =
1

2
p

F[ � 1, � 2]

Z




2X

j= 1

Uj

@ � j

@t
dx, (3.1c)

where Ui = � F=�� i . The energy dissipation law of the new system (3.1a)-(3.1c) is easily
obtained. Let

�
f (x), g(x)

�
:=

Z




f (x)g(x)dx

be the L2 inner product of spatial functions f (x) and g(x).

Theorem 3.1. The energy of the system(3.1a) -(3.1c) is unconditionally stable — i.e.

dF
d t

� 0.

Proof. Considering the sum of the inner products of functions (3.1a) and (3.1b), we
have

2X

i= 1

•
@ �i
@t

, � i

‹
=

2X

i= 1

Di (� � i , � i ),

2X

i= 1

•
@ �i
@t

, � i

‹
=

2X

i= 1

•
@ �i
@t

,
� F
�� i

‹
.
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The energy dissipation law can be now obtained by summing theabove equations and
eliminating

P 2
i= 1(@ �i =@t , � i ) by using the periodicity of the boundary conditions, so that

dF
d t

=
2X

i= 1

•
� F
�� i

,
@ �i
@t

‹
=

2X

i= 1

Di (� � i , � i ) � 0.

Remark 3.1. Since the free energy functional F[ � 1, � 2] can be negative, we de�ne the
scalar auxiliary variable by r ( t ) =

p
F[ � 1, � 2] + C, where C � 0 and F[ � 1, � 2] � � C.

Thus, the free energy functional F[ � 1, � 2] needs to be bounded from below.

3.1. The �rst-order S-SAV scheme

Given the initial value

� 1( t = 0) = � 0
1 ,

� 2( t = 0) = � 0
2 ,

r ( t = 0) =
Ç

F
�
� 0

1 , � 0
2

�
,

and the time step � > 0, we consider the following �rst-order S-SAV scheme.

Scheme 3.1. Let i = 1,2. Having computed (� i , r )k, we update (� i , r )k+ 1 by solving

� k+ 1
i � � k

i

�
= Di � � k+ 1

i , (3.2a)

� k+ 1
i = � si �

�
� k+ 1

i � � k
i

�
+

r k+ 1

q
F

�
� k

1 , � k
2

� Ui

�
� k

1 , � k
2

�
, (3.2b)

r k+ 1 � r k

�
=

1

2
q

F
�
� k

1 , � k
2

�

Z




2X

j= 1

Uj

�
� k

1 , � k
2

� � k+ 1
j � � k

j

�
dx. (3.2c)

The energy dissipation law can be obtained similar to Theorem 3.1.

Theorem 3.2. For the modi�ed energy

F̃[ r ] = r 2,

the scheme(3.2a) -(3.2c) is unconditionally energy stable — i.e.

1
�

€
F̃

�
r k+ 1

�
� F̃

�
r k

� Š
=

1
�

€�
r k+ 1

� 2
�

�
r k

� 2Š
� 0.
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Proof. Considering the inner product of the functions (3.2a) and mu ltiplying (3.2c) by
2r k+ 1, we have

2X

i= 1

‚
� k+ 1

i � � k
i

�
, � k+ 1

i

Œ

=
2X

i= 1

Di

�
� � k+ 1

i , � k+ 1
i

�
,

2X

i= 1

‚
� k+ 1

i � � k
i

�
, � k+ 1

i

Œ

=
2X

i= 1

� si

‚
� k+ 1

i � � k
i

�
, �

�
� k+ 1

i � � k
i

�
Œ

+
2X

i= 1

 
� k+ 1

i � � k
i

�
,

r k+ 1

q
F

�
� k

1 , � k
2

� Ui

�
� k

1 , � k
2

�
!

,

€
2

�
r k+ 1

� 2
� 2r k+ 1 � r k

Š

�
=

2X

i= 1

 
r k+ 1

q
F

�
� k

1 , � k
2

� Ui

�
� k

1 , � k
2

�
,
� k+ 1

i � � k
i

�

!

.

The terms

2X

i= 1

‚
� k+ 1

i � � k
i

�
, � k+ 1

Œ

,
2X

i= 1

 
r k+ 1

q
F

�
� k

1 , � k
2

� Ui

�
� k

1 , � k
2

�
,
� k+ 1

i � � k
i

�

!

are eliminated by summing them, so that

0 �
2X

i= 1

Di

�
� � k+ 1

i , � k+ 1
i

�

=
2X

i= 1

�
si

�

�
� k+ 1

i � � k
i , �

�
� k+ 1

i � � k
i

��
+

1
�

�
r k+ 1 � r k

� 2
+

1
�

€�
r k+ 1

� 2
� ( r k)2

Š
.

Since the terms
P 2

i= 1(� si =� )( � k+ 1
i � � k

i , � (� k+ 1
i � � k

i )) and (r k+ 1� r k)2=� are nonnegative,
the energy dissipation law follows.

3.2. Solving the scheme

In order to �nd solutions of the Eqs. (3.2a)-(3.2c), we write them in a different form.
Substituting (3.2b) and (3.2c) into (3.2a) gives

A i �
k+ 1
i = A i �

k
i + Di

�

r k �
bk

2

�

� � k
i +

Di b
k+ 1

2
� � k

i , (3.3)

where

A i =
1
�

+ Disi �
2, � k

i =
Ui

�
� k

1 , � k
2

�

q
F

�
� k

1 , � k
2

� ,

bk =
2X

j= 1

€
� k

j , �
k
j

Š
, bk+ 1 =

2X

j= 1

€
� k

j , �
k+ 1
j

Š
.

(3.4)
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The Eq. (3.3) yields

� k+ 1
i = � k

i + Di

�

r k �
bk

2

�

� k
i +

Di b
k+ 1

2
� k

i , (3.5)

where
� k

i = A � 1
i

�
� � k

i

�
. (3.6)

We can update � k+ 1
i by (3.5), but bk+ 1 has to be updated �rst. Considering the inner

products of (3.5) and � k
i , i = 1,2 and summing them, we obtain

bk+ 1 = bk +

�

r k �
bk

2

�

ck +
ck

2
bk+ 1,

where

ck =
2X

i= 1

Di

�
� k

i , � k
i

�
. (3.7)

Subsequently,bk+ 1 is updated as

bk+ 1 =
bk +

�
r k � bk=2

�
ck

1 � ck=2
. (3.8)

Substituting bk+ 1 into (3.5), we obtain � k+ 1
i .

To summarise, the term� k+ 1
i is updated as follow.

Algorithm 3.1

1. Solve two linear equations to obtain � k
i from (3.6), i = 1,2.

2. Compute bk from (3.4) and ck from (3.7).

3. Compute bk+ 1 from (3.8).

4. Compute � k+ 1
i from (3.5), i = 1,2.

Thus we only have to solve two linear equations with constant coef�cients instead of
two coupled fourth-order nonlinear parabolic partial diff erential equations.

4. Simulations

In this section, we present the results of numerical experiments to show the accuracy
of the scheme, the mass conservation of the volume fractions, the decrease in the energy,
and the in�uence of different parameters. The parameters are set according to Table 2. All
parameters, except the statistical segment lengthsai in Subsection 4.5, are �xed through
the numerical experiment.
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Table 2: The value of the parameters in the simulation.

Parameter Notation Value

The stabilising coef�cients
s1 5
s2 5

The mobility coef�cients
D1 1
D2 1

The volume of one MMS M 0.16

The polymerization degree N 4.34

The interaction parameters
� 12 2
� 13 10
� 23 1.6

The statistical segment lengths
a1 1
a2 1
a3 1

Remark 4.1. The second-order BDF S-SAV scheme for the MMC-TDGL equations is con-
structed, and the same numerical experiments have been carried out. Since the results for
two schemes are similar, we present the results for the �rst-order S-SAV scheme only.

4.1. Accuracy test

We �rst test the convergence rates of the �rst-order S-SAV scheme, and we present the
results of two tests with different initial conditions.

In the �rst test we consider the domain 
 = [ 0,64] � [0,64] and the initial conditions

� 1( x, y,0) = 0.1 + 0.01 cos
•

6� x
64

‹
cos

•
6� y

64

‹
,

� 2( x, y,0) = 0.5 + 0.01 cos
•

6� x
64

‹
cos

•
6� y

64

‹
.

(4.1)

Here, the 256� 256 uniform grid is used, so that the space step is 0.25. Setting � t = 1.25�
10� 5, we choose the numerical solution computed with the time step � t=12.5 = 1.0 � 10� 6

at T = 2.6 as the reference solution. Numerical solutions are calculated with time steps
� = � t , � = 2� t , � = 4� t , � = 8� t , � = 16� t , � = 32� t at T = 1.6. Table 3 shows theL1 -
errors, L2-errors and the convergence order of� 1, � 2 and r with respect to the reference
solution for different time steps. In Table 3, ei (� ) represents the errors for the time step� ,
i.e.

ei (� ) = � ie � � i � , i = 1,2,

er (� ) = re � r � ,

where � 1e, � 2e, re are the reference solutions,� 1� , � 2� , r � the numerical solutions for the
time step � , and k � k1 and k � k2 are the L1 - and L2-norms, respectively.
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Table 3: Errors and convergence rates for� 1, � 2 and r with the initial conditions (4.1) .

� 32� t 16� t 8� t 4� t 2� t � t

� 1

ke1(� )k1 1.5077e-7 7.5075e-8 3.7275e-8 1.8280e-8 8.8792e-9 4.2269e-9
Order 1.0060 1.0101 1.0279 1.0417 1.0708

ke1(� )k2 3.6982e-6 1.8461e-6 9.1999e-7 4.5713e-7 2.2628e-7 1.1070e-7
Order 1.0023 1.0048 1.0090 1.0145 1.0314

� 2

ke2(� )k1 1.0005e-6 4.9805e-7 2.4727e-7 1.2116e-7 5.8679e-8 2.7773e-8
Order 1.0064 1.0102 1.0292 1.0460 1.0792

ke2(� )k2 2.4457e-5 1.2206e-5 6.0813e-6 3.0185e-6 1.4908e-6 7.2600e-07
Order 1.0027 1.0051 1.0106 1.0177 1.0380

r
ker (� )k1 1.5126e-5 7.5351e-6 3.7442e-6 1.8499e-6 9.0298e-7 4.2965e-7

Order 1.0090 1.0172 1.0172 1.0347 1.0715

In the second test, we consider the domain
 = [ 0,50] � [0,50] and use the uniform
200 � 200 grid with the same space step 0.25. The initial conditions

� 1( x, y,0) = 0.1 + � 1( x, y),

� 2( x, y,0) = 0.5 + � 2( x, y)
(4.2)

with the uniformly distributed on [0,0.01] random terms � i ( x, y), i = 1,2, are computed
at T = 1 with the time step � = 0.001. The numerical solution at T = 1 is the true initial
condition we set in the �rst test. The purpose of this step is to avoid disturbances from
the random terms. Setting � t = 1.25 � 10� 5, we choose the numerical solution computed
with the time step � t=12.5 = 1.0 � 10� 6 at T = 2.6 as the reference solution. Then,
the numerical solutions are computed with the time step � = � t , � = 2� t , � = 4� t , � =
8� t , � = 16� t , � = 32� t at T = 2.6. The notations in Table 4 are the same as in Table 3.
Tables 3 and 4 show that the �rst-order S-SAV scheme matches the �rst-order accuracy in
time.

Table 4: Errors and convergence rates for� 1, � 2 and r with the initial conditions (4.2) .

� 32� t 16� t 8� t 4� t 2� t � t

� 1

ke1(� )k1 1.3682e-4 6.9398e-5 3.4820e-5 1.7309e-5 8.4960e-6 4.0754e-6
Order 0.9545 0.9793 0.9950 1.0266 1.0598

ke1(� )k2 1.6131e-3 8.1574e-4 4.0867e-4 2.0299e-4 9.9587e-5 4.7765e-5
Order 0.9837 0.9972 1.0096 1.0272 1.0601

� 2

ke2(� )k1 9.4696e-4 4.8055e-4 2.4118e-4 1.1990e-4 5.8857e-5 2.8234e-5
Order 0.9786 0.9946 1.0083 1.0265 1.0598

ke2(� )k2 1.0762e-2 5.4435e-3 2.7273e-3 1.3547e-3 6.6472e-4 3.1880e-4
Order 0.9951 1.0030 1.0125 1.0287 1.0609

r
ker (� )k1 1.9194e-5 9.7429e-6 4.8901e-6 2.4310e-6 1.1931e-6 5.7199e-7

Order 0.9783 0.9945 1.0083 1.0268 1.0607
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4.2. In�uence of the initial concentration

Here, we show the phase transition processes for different initial concentrations. In later
simulations, we considered the domain 
 = [ 0,50] � [0,50] with the uniform 200 � 200
grid. We now choose time step� = 0.001 and the initial conditions

� 1( x, y,0) = � 10 + � 1( x, y),

� 2( x, y,0) = � 20 + � 2( x, y),

where � 10, � 20 are constants and� i ( x, y), i = 1,2 are uniformly distributed random terms
on [0,0.01] .

In the �rst experiment, we �x � 10 = 0.1. Figs. 2-5 show the phase transition process
of � 20 = 0.2,0.3,0.4,0.5. In each �gure, the four columns of the grap hs are taken at
t = 5,50,100,200, and the three rows of the graphs show the evolution of the volume
fraction variable � 1, � 2, � 1 + � 2. The light blue domain in the �rst row, corresponding to
the larger values of � 1, represents the higher concentration of MMSs. The yellow domain
in the second row, corresponding to the larger values of� 2, represents the concentrated
polymer segments. The red domain in the third row, corresponding to the larger values
of � 1 + � 2, represents the higher concentration of the composition ofMMSs and polymer
chains.

For low initial concentrations of polymer segments, the polymer chains cannot grow
long enough to graft onto other MMSs or polymer chains — cf. Fig. 2. Therefore, MMSs
and polymer chains form isolated balls. If the initial concentration of the polymer segments
is increased to� 20 = 0.3, some balls can be joined by polymer chains and form a bar —cf.

Figure 2: Evolution in the case� 10 = 0.1, � 20 = 0.2. The rows show the evolution of the volume fraction
variables� 1, � 2, � 1 + � 2. The columns are taken att = 5, 50, 100, 200.
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Figure 3: Evolution in the case� 10 = 0.1, � 20 = 0.3. The rows show the evolution of the volume fraction
variables� 1, � 2, � 1 + � 2. The columns are taken att = 5, 50, 100, 200.

Figure 4: Evolution in the case� 10 = 0.1, � 20 = 0.4. The rows show the evolution of the volume fraction
variables� 1, � 2, � 1 + � 2. The columns are taken att = 5, 50, 100, 200.

Fig. 3. However, other balls are still separated due to the lack of polymer segments. If the
initial concentration of polymer segments reaches� 20 = 0.4 and 0.5, every MMS can be
joined by polymer chains since there are enough segments forthe polymer chains to grow
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Figure 5: Evolution in the case� 10 = 0.1, � 20 = 0.5. The rows show the evolution of the volume fraction
variables� 1, � 2, � 1 + � 2. The columns are taken att = 5, 50, 100, 200.

Figure 6: Evolution in the case� 10 = 0.02, � 20 = 0.5. The rows show the evolution of the volume
fraction variables� 1, � 2, � 1 + � 2. The columns are taken att = 5, 50, 100, 200.

— cf. Figs. 4 and 5. Therefore, in these two cases, a reticularstructure can be obtained.
When the initial concentration is higher, the red area in the third row becomes larger —
i.e. the structure is tighter. This is consistent with the results in [29] .
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Figure 7: Evolution in the case� 10 = 0.05, � 20 = 0.5. The rows show the evolution of the volume
fraction variables� 1, � 2, � 1 + � 2. The columns are taken att = 5, 50, 100, 200.

Figure 8: Evolution in the case� 10 = 0.1, � 20 = 0.5. The rows show the evolution of the volume fraction
variables� 1, � 2, � 1 + � 2. The columns are taken att = 5, 50, 100, 200.

In the second experiment, we �x � 20 = 0.5. Fig. 6-9 show the phase transition of
� 10 = 0.02,0.05,0.1,0.15. Note that if the initial concentratio n of the MMSs increases,
the light blue domain in the �rst row turns lighter. This indi cates that the concentration
of MMSs increases. The orange domain in the second row turns yellow, which indicates
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Figure 9: Evolution in the case� 10 = 0.15, � 20 = 0.5. The rows show the evolution of the volume
fraction variables� 1, � 2, � 1 + � 2. The columns are taken att = 5, 50, 100, 200.

the concentration of polymer chains decreases. The red domain in the third row turns
darker. This indicates that the concentration of the composition of MMSs and polymer
chains increases. A reticular structure can be formed in allfour cases — i.e. if the initial
concentration of the polymer segments is suf�ciently high, the initial concentration of the
MMSs does not affect the formation of the structure.

4.3. The evolution of total mass and modi�ed energy

In order to verify numerically the mass conservation of the MMC-TDGL equations in
Theorem 2.2, we transform the integral

R

 � i dx into the discrete form

P 200
m,n= 1 � i ,m,nh2

and then plot the graph of the sums over time t . Fig. 10 a) shows the total mass of� 2 for
initial concentrations � 20 = 0.2,0.3,0.4,0.5 in the �rst experiment in Subsection 4.2, a nd
Fig. 10 b) shows the total mass of� 1 for initial concentrations � 10 = 0.02,0.05,0.1,0.15
in the second experiment. The points lie on horizontal lines. This implies that the numer-
ical solutions are mass conservative — i.e. the �rst-order S-SAV scheme maintains mass
conservation.

The modi�ed energy F̃ with time t for different cases is plotted to verify the modi�ed
energy stability. Fig. 11 a) shows the time evolution of the modi�ed energy for the initial
concentrations � 20 = 0.2,0.3,0.4,0.5 in the �rst experiment, and Fig. 11 b) shows the time
evolution of the modi�ed energy for the initial concentrati ons � 10 = 0.02,0.05,0.1,0.15
in the second experiment. All curves show a downward tendency — i.e. the modi�ed
energy decreases with time, as proved in Theorem 3.2. Fig. 12demonstrates the original
and modi�ed energies for � 10 = 0.05, � 20 = 0.5.
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Figure 10: Evolution of total mass. a) Total mass of� 2 for di�erent initial concentrations � 20 =
0.2, 0.3, 0.4, 0.5. b) Total mass of � 1 for di�erent initial concentrations � 10 = 0.02, 0.05, 0.1, 0.15.
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Figure 11: Evolution of modi�ed energy. a) Modi�ed energy for initial concentrations � 20 =
0.2, 0.3, 0.4, 0.5. b) Modi�ed energy for initial concentrations � 10 = 0.02, 0.05, 0.1, 0.15.
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Figure 12: Original and modi�ed energy for the case� 10 = 0.05, � 20 = 0.5.

4.4. The steady state with time-developing

Theorem 3.2 and Fig. 11 show that the modi�ed energy F̃ decreases with time. The
further evolution for � 10 = 0.1, � 20 = 0.5 is displayed in Fig. 13. We note that � 1, � 2 and
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Figure 13: Evolution for � 10 = 0.1, � 20 = 0.5 and its steady state. The rows show the evolution of the
volume fraction variables� 1, � 2, � 1 + � 2. The columns are taken att = 2000, 5000, 8000, 8200.
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Figure 14: The modi�ed energy in the steady state for the case� 10 = 0.1, � 20 = 0.5.

� 1 + � 2 almost reach the steady state att = 8200. The modi�ed energy in Fig. 14 stays
conserved till it reaches the steady state. This is consistent with the results in [51] .

4.5. In�uence of different statistical segment lengths ai

The statistical segment lengthsai , i = 1,2,3 in the interface gradient terms of de-Gennes
(1=36)

P 3
i= 1(a2

i =� i )jr � i j
2 determine the thickness of the interface. The numerical exper-

iments are aimed to verify this observation. We set the initial conditions

� 1( x, y,0) = 0.1 + � 1( x, y),

� 2( x, y,0) = 0.5 + � 2( x, y),
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Figure 15: Numerical experiments with statistical segmentlengths ai , i = 1, 2, 3. Columns present
numerical results withai = 1, 1.5, 2, 2.5. Rows show evolution of volume fraction variables� 1, � 2, � 1 + � 2.

where � i ( x, y), i = 1,2 are uniformly distributed random terms on [0,0.01] . The graphs
in Fig. 15 are taken at t = 100. The four columns present the numerical results with
ai = 1,1.5,2,2.5. The rows of the graphs show the evolution of thevolume fraction variable
� 1, � 2, � 1 + � 2. For clarity, the range of the axis is changed from[0,1] to [0,0.2] when
the volume fraction � 1 is plotted. We note that the thickness of the interface increases as
the statistical segment lengthai increases.

5. Conclusion

Ternary MMC-TDGL equations and a �rst-order S-SAV scheme for these equations are
constructed. Since an MMC hydrogel has a well-de�ned reticular structure, we use the
Boltzmann entropy theorem, Flory-Huggins lattice theory and statistical thermodynamic
method in order to develop a reticular free energy, which replaces the Flory-Huggins free
energy. Combined with the TDGL method, the ternary MMC-TDGLequations are obtained
based on the ternary Cahn-Hilliard equations. For the simulation of the MMC hydrogel
phase transition, a �rst-order S-SAV scheme is constructed. It is linear and unconditionally
energy stable. Using the S-SAV approach, the ternary MMC-TDGL equations are decoupled
into two linear equations with constant coef�cients, so the �rst-order S-SAV scheme is ef�-
cient. Numerical experiments illustrate the accuracy of the scheme, the mass conservation
of the volume fractions, and the decrease in the modi�ed energy. The results of simulations
using different parameters are consistent with the physical phenomena. The convergence
and error analysis of the �rst-order S-SAV scheme will be studied later on.
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