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Abstract. Transport networks such as blood vessel systems and leaf venation are uni-
versally required for large-size living organisms in order to overcome the low efficiency
of the diffusion in large scale mass transportation. Despite substantial differences in liv-
ing organisms, such networks have many common patterns — viz. biological transport
networks are made up of tubes and flows in tubes deliver target substances. Besides,
these networks maintain a tree-like backbone attached with small loops. Experimen-
tal and mathematical studies show many similarities in biological mechanisms, which
drive structural optimisation in biological transport networks. It is worth noting that
the structural optimisation of transport networks in living organisms is achieved in the
sense of energy cost as a consequence of natural selection. In this review, we recall the
exploration history and show mathematical structures used in the design of biological
transport networks.
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1. Introduction

Transport networks play important role in natural and industrial systems. Rivers carry
water to oceans and lakes, highways and railways transport people and goods all around
the world, telecommunications networks transmit information, and blood vessels and leaf
veins transport substances in living organisms.

However, the transport capacity of various networks is limited by the flow processing
capacity of network nodes (aviation networks), by the conductance and width of network
edges (rivers and blood circulation systems), or by both factors mentioned (internet). In
general, the conservation of matter leads to constraints on the flow in different edges.
If there is no node capacity, the flow constraints are instantaneously satisfied. Otherwise,
a delay is allowed to satisfy the flow constraints. For information networks, such constraints
are weakened greatly by a possible information replication on nodes. The limitations in
transport capacity and constraints in flows determine the main geometrical and topological
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characteristics of the networks — e.g. biological transport networks usually contain various
loops while maintaining an impression of a tree-like backbone [23,29]. Here, we review
the exploration of the designing principle of biological transport networks.

The first breakthrough in biological transport networks was the experimental finding
of an approximate cubic law in blood vessel bifurcation — viz. D* = D? + D?, where
D, D;, and D, are the radii of the parent vessel and its left and right daughter vessels,
respectively [71]. This law is now referred to as Murray’s law due to Murray’s deep insight
between the bifurcation relation and the optimisation principle in energy cost. According
to Murray explanations, this is a consequence of another cubic relation between blood flow
Q and vessel radius D, Q o< D>. In Murray’s theory, the latter cubic relation is obtained by
the optimisation of the total energy cost —i.e. the fluidic cost in driving blood flow in the
vessel and the biological cost in metabolism and material, which includes the material cost
in producing blood cells and building the blood vessel wall and the energy consumption
in functioning of these cells [54]. Murray’s law is also observed in plant vessels and leaf
venation [49].

Murray’s law provides the deep understanding of the local structure of biological net-
works. Following the idea of energy-cost optimisation, mathematical models have also
been used to understand the geometrical and topological characteristics of an entire bio-
logical transport network. For different transport networks, a power law relation E,, = C"
can be generally introduced for the metabolic and material cost E,, and flow resistance C.
This relation is used to show that for fixed flow sources (sinks) a network has a tree-like
structure if y < 1[5,6,14]. In general, there are many loops attached to the tree-like back-
bone in biological transport networks [9, 11,29, 34,55]. Animals and plants can benefit
from such loop structures in various ways. By incorporating the risk tolerance in network
damages [29] or the effects of fluctuating flow distributions [9,29, 30], optimal structures
are shown to be loopy networks while maintaining a major structure of a tree-like back-
bone. Such a structure is also believed to afford great benefits to living systems for their
mechanical robustness [34].

Optimisation of the energy cost can be viewed as the consequence of natural selection.
Highly efficient and robust transport networks, which optimise the energy cost while satis-
fying tissue demanding, bring tremendous competitive advantages to species. Nevertheless,
in order to achieve such an optimisation, life systems have to find special mechanisms such
as an adaptation dynamics driven by specific stimuli (which means signals sensed by cells
and modulate their cellular dynamics).

The Murray’s law also suggests that the wall shear stress, which is proportional to Q/D3,
is a constant in the entire circulation system at optimal state. This implies that the wall
shear stress should be an important stimulus that drives blood vessel adaptation to achieve
the optimisation of the network structure. Indeed, experimental studies verified that the
wall shear stress in a circulation system lies in a relatively narrow range [19, 23, 25,58-
60]. Further studies have shown that endothelial cells, which form the inner layer blood
vessel walls, can really sense the wall shear stress [31-33]. The wall shear stress acts as
a key stimulus for both blood flow regulation in the short term response and blood vessel
adaptation in the long term response [19,23,25,31-33,58-60].
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Mathematical models are build up to describe the adaptation of the vessel diameter in
response to wall shear stress [19,23,25,59]. It is interesting to not that the parallel vessel
systems where two or more vessels start from the same point and converge to different
points, are unstable in such kind of adaptation dynamics [19, 25]. More precisely, the
diameter of one of two parallel vessels converges to zero as time tends to infinity. One
may worry about the adaptation stability of arterial trees, which are very similar to parallel
systems since the blood pressures at the inlets of capillaries are maintained close to a fixed
value [25]. In fact, by incorporating the short term response of blood flow regulation, the
adaptation of arterial trees becomes stable [25].

The two research lines of structural optimisation and vessel adaptation merge back
again in Cai-Hu’s adaptation model and later adaptation models for biological transport
networks [23, 61, 62]. This adaptation model is driven by local stimuli, mainly the second
moment of the wall shear stress. This adaptation dynamics can be regarded as a gradient
flow to optimise the total energy cost for both fixed and fluctuation flow distribution. In
particular, a number of loops in the network can be stabilised for sufficiently strong fluc-
tuation in flow distribution. The adaptation model is successfully used in predicting vessel
pruning (which means disappearance of the existing blood vessels) observed in embryo
zebra-fish [8]. This success shows that the adaptation in response to the wall shear stress
is indeed employed by animals to optimise the efficiency of their circulation system. Prun-
ing of unnecessary blood vessels as a sequent of vessel adaptation has been shown to be
a significant means in optimising the network structures [8,23,66].

With a pre-given network, the optimisation and adaptation models can provide an opti-
mal network. Nevertheless, how biological transport networks are initially formed remains
yet to be answered. Active explorations have also been undertaken to the mechanisms
for emergence of biological transport networks. The importance of hormone transport has
been shown experimentally in the initiation process of biological transport networks in
both animals and plants. For embryo vasculogenesis [26], self aggregation of endothe-
lial cells leads to the formation of the earliest circulation system before the heart starts to
beat. Agent based modeling and numerical studies suggest the essentiality of migration and
elongation of endothelial cells in vasculogenesis and angiogenesis [35,51]. For leaf bud-
ding [4,11,48,69], cell differentiation is induced along concentrated pathways for delivery
of auxin, which is an important plant hormone for growth and cell differentiation. Cells on
this pathway eventually develop to form the leaf venation. Canalisation, a gene regulation
model for cell differentiation stimulated by auxin, was hypothesized in the formation of
leaf veins as a response to auxin delivery [11,17,48,52,53,63-65].

Although the above agent based models have been successful in relating the signals of
hormone transport with cell differentiation and emergence of vascular networks, they are
silent in the optimisation of network structures. Cai and Hu developed a continuum model
for the initiation process of biological transport networks [24] such that initiation and adap-
tation processes are integrated in a single model. By coupling the hormone transport and
the adaptation process, this model naturally optimises the total energy cost, including the
energy cost in transportation and metabolic and material costs. In this model the energy
cost function decreases continuously and drives the canalisation. As the result, optimal
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structures are obtained as the steady state of the evolution dynamics. The new mathe-
matical structure in the Cai-Hu continuum model has attracted widespread attention and
interest. A series of work has been done on the well-posedness [2,20,21,38-41,43,68,72]
and numerical methods [1,16,22] for the model. It should be noted that some of the works
appeared before the Cai-Hu model was published and just make references to their lectures.
Despite the widespread success, more efforts are needed in biological transport network
studies. First, the optimisation and adaptation models of biological transport networks
must be integrated into cellular biological processes. It remains unclear how the micro-
scopic cellular dynamics is connected with the macroscopic adaptation. Second, the adap-
tation of vessel segments plays an important role in angiogenesis and root development.
However, it is still far from a clear picture on what stimuli help to maintain the stability of
capillary networks while meeting the needs of the tissue, and efficient numerical methods
are extremely important in simulations of such large scale systems [44]. Finally, new math-
ematical structures of biological transport networks may provide new insights and tools for
applications in other fields, such as graph theory and matrix optimisation. It also allows
further applications on designing efficient network for transmission of mass, energy, and
information [27]. Studies on the models can also shed lights on the optimisation of trans-
port networks with different cost functions and different constraints. The models can also
be used in the design of artificial blood vessel networks [46]. From this point of view, fur-
ther studies are important in discovering the properties and exploring the applications of
the discrete and continuum models. This review aims to provide a complete picture on the
state of research and promote interdisciplinary studies on biological transport networks.

2. Necessity of Biological Transport Networks

Typically, the diffusion coefficient D of a molecule to move within its local tissue en-
vironment is of the order 10 ~ 1000 um? /s [66]. From a simple dimensional analysis, we
can estimate the time T, ~ L2/D, required for a molecule to traverse a given distance L.
This quadratic dependence indicates the inefficiency of the diffusion for mass delivery in
organisms with large body size. Biological transport networks are designed to overcome
this inefficiency of the diffusion for large scale transport. It is interesting to see that simi-
lar network structures appear in silicon-on-insulator (SOI) circuits for heat removal due to
a similar quadratic dependence for heat conduction [7,57].

Biological transport networks consist of hollow tubes. Flows in tubes are used to deliver
target molecules — e.g. oxygen, carbon dioxide, and water molecules. In this way, convec-
tion is used for efficient mass transport. Diffusion is used for transport only between the
tissue and terminal branches of the transport networks, such as capillaries, hairy roots, and
terminal leaf veins. A typical spacing between neighboring capillaries and between termi-
nal leaf veins is of the order 100um [44,66]. On this spacial scale, diffusion is sufficiently
efficient for the time scale of living organisms.

2.1. Kirchhoff’s equation for biological transport networks

A blood vessel can be regarded as a cylindrical tube, whereas the leaf vein is usually
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formed by a bundle of small tubes. The blood flow in large blood vessels can be very
complex, which can indeed affect the geometry (vessel diameter and vessel wall thickness)
of blood vessels [59,60]. In this review, we discard this complex effect and consider only
small vessels.

For fluids in small tubes — e.g. with luminal diameters smaller than 0.6mm, the
Reynolds number is sufficiently low and the flow in the tube can be well approximated
by the Poiseuille flow [19,59,60]. More exactly the fluid velocity along the cylindrical tube

satisfies
2
v(r)=vy (1—(1{—0) ),

where v, is the maximal velocity at the center of the cross section, r the polar radius, and
. . . R .
R, the vessel radius. In this case, the volumetric flow rate Q = 21 f 0 ®y (r)rdr in the tube

and the wall shear stress 7, = u%| on the wall is determined by the force balance

r=R,
(note that the inertial force is negligible ;)Nhen the Reynolds number is small)

__ APnD* _32uQ _ APD
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where u is the viscosity of the fluid, AP the pressure drop, L the tube length, and D = 2R,
the tube diameter. The resistance R of a vessel, such as a blood vessel or a leaf vein and its
reciprocal, the conductance C, are defined as

_ AP 128ul _ nnD*

_ oo _eemk oD 2.2
nQ  mnD*4 128uL (2.2)

where n is the number of parallel tubes in the vessel. For blood vessels, n is usually equal to
1, whereas for vessels in plants such as leaf veins, n is greater than 1 except for the terminal
branches of the networks. The conductance depends only on the geometry of the vessel. It
is very sensitive to the diameter change due to the quartic power in the Eq. (2.2). In fact,
this sensitivity is artfully employed by blood vessel systems by accurately controlling the
luminal diameter via contraction and dilation of smooth muscle cells [31-33].

The flow distribution in biological transport networks is determined by the conductance
of all edges and the boundary conditions at the inlets and outlets of the network. Due to the
mass conservation, we can use the Kirchhoff law to determine flow rate Q; j on the edges
and the pressure P; at the vertices

> Qi =s; (2.3)

JEN;
Ql] =(PI—P])CU, (2.4)
where the lowercase subscripts i and j are used for network vertices — e.g. inlets, outlets,

bifurcation points, N; is the neighbour set of the vertex i, s; the given flow source (sink) at
the vertex i, Q;; = —Qj; the flow on the edge {i, j}, and C;; = Cj; the conductance of edge
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{i,j}. In particular, if two nodes i and j are not connected, both Q;; and C;; are zero. We
can reformulate the Egs. (2.3) and (2.4) as

Z(Pi —P;)Cij =5

J#
or
AP =s, (2.5)
where P = (P;,P,,...,Py)T, s =(51,55,...,55)7, N is the total number of vertices and the
coefficient matrix A has the form
[ >.C;j —Cip ... —Ciy ]
#1
—Cx 2 Gy - —Cay
A= i#2
—Cy1 —Cya ... 2, Cy;
L j#N J

Note that —A is the graph Laplacian operator of the corresponding weighted graph with the
weights are given by the conductances. The Eq. (2.5) is a positive (semi) definite equation
set for the pressure at all vertices. Once the boundary conditions — e.g. the pressure or
flow at the inlets and outlets are given, the solution can be determined. The Eq. (2.1) can
be then used to calculate the wall shear stresses.

3. Murray’s Law

As was already mentioned, the Murray law is widely observed in different animals [71].

At a bifurcation point of the vessel network, it is observed that the three radii D, D;, and

D, of the parent vessel and its left and right daughter vessels, respectively, approximately
satisfy the cubic relation

D*=D}+D?. (3.1)

Murray provided an insightful explanation for this experimental observation — viz. the
energy cost for a vessel segment consists of two terms

128uLQ? mc
HLQ + —"Dp?L,
D4 4

where c,,, is a metabolic constant. The term APQ is the energy cost to drive the blood
flow and c,,,V the metabolic energy cost for the production and function of the blood in the
vessel.

Note that the blood flow Q is demanded by the downstream tissue and may be regarded
as a constant. Any discount of the blood flow can lead to dysfunction of the downstream
tissue. Minimising the total energy cost E, with respect to the vessel diameter D, we obtain
the optimised energy cost

Ey=APQ+c,V =

E, =minE, =c,;Q3L
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with the diameter
Q=c,D3, (3.2)

where

_T. -3 T 4| Cm
Cl = —CuCy ", (o

Interestingly, in order to satisfy the optimality condition (2.1), an optimal shear stress need
is required uniformly

T = 320Q =/ UCy,. (3.3)

D3
Note that the flow rate Q in the parent vessel is equal to the sum of the flow rate in the
two daughter vessels — i.e.

Q=Q +Q,.

Substituting the optimality condition (2.1) into the above equation leads to the Murray
law (3.1).

Murray’s theory initiated various studies of the network structure of circulation systems
and stimulated the researches on adaptation dynamics based on mechanical stresses such
as the wall shear stress.

4. Optimisation of General Biological Transport Networks

4.1. Optimisation frameworks

There are different mathematical models for optimisation of general biological trans-
port networks. Here, we discuss the equivalence of three optimisation frameworks used in
previous models. This can help us to understand the relations between the models intro-
duced in previous studies.

4.1.1. Framework 1
According to Murray arguments, the total energy cost for a biological transport network is
Q%
E (€)= (?” + cméfj) Ly,
{i.j} u

where éij = C;j/L;; is the conductivity of the edge {i, j} and y € (0,1). In particular, for
blood vessels y = 1/2. For leaf veins, we have 1/2 < y < 1 due to the fact that a leaf vein
is a bundle of small tubes [23]. In a more general form, the metabolic or material cost
function m(C) of an edge has to satisfy the following conditions:

m(0)=0, m'(C)>0, m”(C)<o0.

We can check that m(€) = ¢,,C" satisfies these conditions if y € (0, 1).
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The flow rates Q; ; are determined by the Kirchhoff law (2.3), (2.4). For giYen flow
sources, we can see that the solution Q; jis determined by the conductance vector C, whicNh
appears in the coefficient matrix A. Therefore, the total energy cost is a function of C.
Noting that éij = éﬁ and Q;; = —Qj;, we compute the gradient of the total energy cost
with respect to Cy;, viz.

9E;(C) ay-1 QijL;; 3QU
= =2 CmYCkl Lkl 22
aCy c Gy 9Cy
., Q2 oQj;
=2( cpyClt = L +2) (PP !
( T o5 ‘ {Z: )3Ckz
i,j}
oy Q3 Q
1 Kl ij
—2 (cmyc,jl =5 | L 4> P—
kl {i.j} kl
2 2% 0,
Sy— JEN;
- 2(cmyc,jl 1—~—"21)Lkl +4> P
Ckl i Cr
2
y—1 Kl
=2 CmYCZl —N_z Lkl
G

It is worth noting that the gradient depends only on local information. For optimised states,
we have

Qu = —CN"le- (4.1)

This is a generalised form of the cubic relation (3.2).

In the previous studies [5,6,9,14,15,29], the metabolic energy cost is not considered
as a part of the energy cost. Instead, a constraint is applied on the total metabolic cost —
viz. the sum of C’iyj is regarded as a constant and a nonlocal Lagrangian multiplier is added
to the Lagrangian gradient.

4.1.2. Framework 2

In the second framework, the total energy cost

i Q7 X
E,y (Q,C):Z a2 temCi Li;
{i,j} 1

is optimised under the flow source constraints (2.3), but the Olhm law (2.4) is omitted.
Although the total energy cost is the same as in Framework 1, Q and C are now viewed as
independent variables of E,. Clearly, the Lagrangian is

L(Q&)=E(Q.¢ ZA(ZQU )

JEN;
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Noting that Q;; = —Qj; in general, we obtain the gradient of the Lagrangian

9L, (Q) é) Qi

=2__A'k+A'l’
9Qu Cri
8L2(Q’C) Y Yéy 1 il I

With given conductances, the Olhm law (2.4) is spontaneously achieved by optimising
L,(Q,C) with respect to Q. The pressure P, = A,/2 is simply given by the Lagrangian
multipliers. The optimisation based on Framework 1 can be considered as the alternating
direction method based on Framework 2.

4.1.3. Framework 3

Using the optimal condition (4.1) at the critical points, the total energy cost can be written
in the form

E3(Q) = Z CngLij, (4.2)

{i.j}

where T' = 2y/(1+y) € (0,1). The energy cost is also optimised under the flow source
constraint (2.3). In this case, the conductance is invisible in the model. We can regard the
optimisation of conductance in response to the change of flow rate to be extremely fast.
Therefore, the conductance is always given by the optimal condition (4.1).

As far as the alternating direction optimisation in Framework 2 is concerned, the op-
timisation on the Q-direction leads to the Eq. (2.5), which is incorporated implicitly in
Framework 1 and the optimisation on the C-direction leads to the Eq. (4.1), which is incor-
porated implicitly in Framework 3. In fact, the alternating direction iterations based on the
Egs. (2.5) and (4.1) can be used to find optimal structures of transport networks. From this
point of view, the optimal network structures remain the same under the three frameworks.
However, due to the nonconvexity in the total energy cost, there exists a variety of optimal
structures. Nevertheless, different frameworks generate different optimisation processes
and numerical algorithms. Optimisation processes based on the three frameworks may
produce different optimal network structures even when they start from the same initial
configuration.

Although optimal structures stay the same within the above optimisation frameworks,
the constraints under different frameworks, they can be generalised in a different way.
The first framework can be generalised to describe systems with diameter-dependent con-
ductances and general relations between the metabolic-cost and conductance — e.g. the
Non-Newtonian effect in blood flow is significant when the vessel diameter is close to the
diameter of red blood cells. In this case, the effective viscosity is diameter-dependent. How-
ever, the constraint of the Ohm law means that the flow is driven by an effective pressure.
In the second framework, there is no requirement of the Ohm law. Thus it can be used in
the study of systems with more general flow fields. Nevertheless, the conductance idea is
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still important. Since there is no conductance in the third framework, this allows the most
genera extensions. The only requirement in this framework is the mass conservation.

4.2. Topology of optimal biological transport networks

Using the total energy cost, we can study the topology of those biological transport
networks, which have a treelike network skeleton and maintains loop-forming bridge edges
between the branches.

4.2.1. Optimal structure for fixed flow sources

It has been proved that for fixed flow source constraint, the optimal structure is a loopless
treelike network under Framework 1 [15]. We can employ the reduction to absurdity to
prove this by using the cost function (4.2) and the flow constraint (2.3). The proof relies
on the concavity of the total energy cost under perturbations. It is slightly different from
the corresponding proof [15].

Let Qi]- be optimal flow rates satisfying the flow constraint (2.3). Assume that there
is a loop with K vertices iy,1iy,...,ix in the optimal network — viz. Q; ; =~ # 0 form =
1,2,...,K and ig,, = i;. We add an circulation flow x in the loop

Qimim+l (X) = Qimim+l + X5

while keeping the flow rate on other edges unchanged. It is easily seen that the flow con-
straint (2.3) is still satisfied. After changing the flow rate, the change of total energy cost
is

AE3(x) =

M=

r AT
C3 (Qimim+1 (x)— QimimH) Lyj.

1

3
I

According to our assumption, on any edge of the loop the flow rate Qimimﬂ is not equal to

2
zero. Thus we have dAd—ii(x) |,=o < O for T € (0, 1), which is inconsistent with the optimality

assumption. Therefore, for fixed flow sources, the optimal network structure is a loopless
tree. In fact, AE5(x) becomes non-differentiable and attains a local minimum if and only
if the additional circulation flow x cancels the flow on an edge of the loop.

Optimal network structures obtained in our numerical simulations are shown in Fig. 1.
If y > 1, the optimisation problem is rigorously convex and there is only one optimal solu-
tion with a large number of small loops. When vy decreases, the loop density also decreases
slightly. A first order phase transition in loop density can be observed at y = 1 in the op-
timal structures. For y = 1, the optimisation problem is convex but not rigorously convex.
As the result, there can be multiple optimal structures. As evidence, we see that the opti-
mal structure in Fig. 1(c) is slightly asymmetric. For y < 1, the optimal network structure
becomes a loopless tree structure. Note that the energy function becomes non-convex in
this case. There are a huge amount of optimal structures (local minima), each of which
corresponds to a tree-like network structure.
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Figure 1: Optimal structures for fixed source-sinks.
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4.2.2. Loops in biological transport networks

in different transport networks. Theoretical studies show multiple ad-
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vantages of loopy structures,
cost under fluctuat
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ing flow demands [9,23,29]. Here we only review in detail the opt

sation of network structures under fluctuating flow demands.
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illary flows [25],

Fluctuating flow demands are observed in different biological transport networks, in-
and the fluctuating contraction and dilation of the cell membrane of Slime Mold P. poly-

cluding the open-close switch of stomata [29], the flow regulation of cap
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cephalum [70]. Such fluctuating flow demands have been modeled as a moving sink [29]
or random sinks [9, 23]. In general, we can regard the sink, s;, i = 2,3,...,N, in the
Eq. (2.4) as a random variable (the flow source at the root node s; = _Z?]:z s;). Although
the neighboring sinks can be correlated [18] for the sake of simplicity we assume that they
are uncorrelated. Naturally, the total energy cost function becomes

Ey (é) = Z <Qéij>

{i.j} ij

+Cmégfj Ll]

The second moment of flow rate can be evaluated by

N 2 N N 2
<Q?j> = <(ZSinj,k) > = Z UiQ?j,k + (Z einj,k) 5
k=2 k

k=2 = =2
where e, = —(s;) and ai are the expectation and variance of the random flow sinks at sink
k, whereas Q;;  is the flow in edge {i,j} at the single-sink state that only 5; = —s; = 1

are nonzero. In particular, when the random sinks are independent identically distributed
(i.i.d.), we have

N

2\ _ 2 2 272

<Qij> =0 ZQij,k e,
k=2

where Q; = Zgzz Qij k-

In what follows, we only consider i.i.d. random sinks. In this case, we can use dimen-
sional arguments to show that the topology of the optimal network structure depends on the
ratio o /e only. Since the open-close switch for the sinks is observed in different biological
transport networks, uniform open probability p and uniform strength 1/+/P are introduced
for all sinks — cf. [25]. More exactly, each sink has a probability p to be open independently
with s = 1/4/P, whereas s = 0 when the sink is closed. In this case, o/e = 4/(1—p)/p,
and the second moment of flow rate is

N
<Q?j> =(1 —p);Q?j,k +pQ..

The open probability can be used to quantitatively describe the strength of fluctuation.
Thus a greater open probability p means a smaller fluctuation in flow rate. For p = 1, the
fixed sink case reemerges. For p — 0, the moving-sink case is obtained in [29].

Optimal network structures obtained with fluctuating flow sinks (sources) are shown
in Fig. 2. We observe that even if y < 1, there are numerous loops in the optimal transport
network when fluctuation in flow is sufficiently strong (sufficiently small p). The loop
number is an increasing function of y and a decreasing function of p. For fixed y, as the
open probability increases, the number of loops decreases and reaches zero at a sufficiently
large p. For y = 0.25 and p = 0.5 the optimal structure does not contain any loop.
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Figure 2: Optimal structures for fluctuating sinks. The bottom node is set to be the single source node
and all other nodes are endowed with random sinks with open probability p. The upper panel: p=0.1;
The bottom panel: p=0.5. The left-, the middle-, and the right-panels correspond to y =0.75, y = 0.5,
and y =0.25, respectively. Other settings are as same as in Fig. 1.

Similar to the network formed by the Slime Mold P polycephalum, any node can be
a source or sink node at random and (s;) =0, lejzl sx = 0. In this case, we have

- (Bt ) Bl

k=1 =1 =1

The corresponding optimal structures embedded in a two dimensional plane are shown
in Fig. 3. We note that for the variance oi uniform for all nodes (a)-(c), the optimal
structure is a decentralised network. In each of these networks, all nodes maintain a similar
degree of connections to other nodes. For y > 1, there are numerous long range connections
and it is not convenient to show the network in a figure. For y = 1, the optimal network
appears to be well clustered locally. As y decreases, the number of loops becomes smaller
and smaller. In the limit case, the network becomes loopless and maintains a relatively small
total length. It is interesting that we can effectively control the total number of edges (or
the degree of each node) by selecting suitable y. When the variance is extremely different
((d) in Fig. 3), nodes with large variances become the centers in optimal networks.



Optimisation of Biological Transport Networks 85

LRSS
SR
/KN

>~

1595

A
ﬂg

B

¥
>k
2%
S,

N
¢

A
(X

V=

(@A y=0.1 (b) y=0.5 (dy=0.5

Figure 3: Optimal structures for random source-sinks (shown by the red dots). The distance between
two nodes is given by their Euclidean distance. An all-to-all network with uniform conductivity 1 is
used as the initial value. (a)-(c) Optimal networks for random source-sinks with uniform variances o7.
(d) Optimal networks for random source-sinks with extremely nonuniform variances o?.

4.3. Matrix optimisation and optimal transport networks

Using the Kirchhoff law (2.5), the energy cost function for random source-sinks with
uniform variances can be written in the form

Eq (C) = <sTA_1s> +cm Z éinLij
{i.j}
=tr (A_lz) +Cm Z él};Ll],
{i.j}
where X is the covariance matrix of the sources. In particular, for i.i.d. random flow sinks
we have

E; (C) =o?tr (A_l) +cm Z él.YjLij
{i.j}
=02 AT ey . ClLy, (4.3)
i {i.j}
where A;, i = 1,2,...,N are the eigenvalues of A. In this case, network optimisation is
closely related to many matrix optimisation problems such as maximisation of the smallest
eigenvalue with given constraints or minimisation of the ratio between maximal and mini-
mal eigenvalues [3,56]. In this case, the optimised network structure is called “entangled
network” [3,12]. This kind of network structures usually maintains good robustness.
Eigenvalues obtained from the matrix optimisation problem (4.3) under different geo-
metrical setups are shown in Fig. 4. As y decreases, the number of edges also decreases.
As the consequence, the average distance between network nodes k grows, which enlarges
the ratio between the maximal and minimal eigenvalues.

5. Adaptation of General Biological Transport Networks

Circulation systems of animals are well designed to respond to both short-term and long-
term change of tissue demands. The short-term response, called the blood flow regulation,
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Figure 4: Eigenvalues of the coefficient matrix A. (a) The distances L;; are given by the Euclidean
distances between the nodes in a plane. (b) The distances L;; of all edges are set to be 1.

includes multiple means — viz. the blood pressure controlling at the heart, the luminal
diameter changes of blood vessels, and the open rate modulation of the capillary flows [13,
31-33,58]. Meanwhile, as the long-term response, the chronic adaptation of the circulation
system also involves multiple structural changes including the luminal diameters, the micro-
vessel density, and the vessel wall thicknesses [10,36,37,45,47,50,67]. By means of the
blood flow regulation and the adaptation of blood vessels, the efficiency and robustness of
circulation systems are maintained spontaneously. This is closely related to the structural
optimisation of the circulation system.

The shear stress on blood vessel walls plays an important role in both short-term and
long-term response. For example, as a short-term response, the vessel dilates when the
blood flow increases whereas contracts when the blood flow decreases. As the consequence,
the change wall shear stress due to flow changes is buffered and it leads to a relatively
steady-going level of the wall shear stress [31-33,58]. The endothelial cells of blood vessels
are responsible for sensing the wall shear stress. Meanwhile, a long-term change of blood
flows also leads to structural changes in the vessel luminal diameter [60]. As the Murray
law shows, the wall shear stress is relatively uniform in the entire circulation system in
optimal structures. This has been further validated by different experiments [28,42].

Using the experimental observations of [28,31-33,42,58], Hacking et al. [19] and Pries
et al. [59] introduced the following minimal model of the blood vessel diameter adaptation:

dD;; 321Q;;
d_tl] = co(Tij = Te)Djj zco(—l]_fe)Dij’ CRY

where ¢, is a positive constant corresponding to the growth rate of the diameters. This
model describes the balance between an intrinsic decreasing tendency due to cell death and

other effects, —cy7.D;;, and a growth effect c47,,;D;; stimulated by the wall shear stress.
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Figure 5: (a) Phase-plane illustration of the adaptation process of the two parallel vessels. The icons in
(b) are borrowed from that used in electric circulation. The two black squares in (a) denote the stable
steady states, whereas the two blue dots denote the unstable steady states. An arrow starting at a point
(D, D,) is used to show the changing rate of the two diameters.

Taking into account the relation between conductance and the vessel diameter (2.2), one
can write the adaptation model in the form

dCj;
dt

= 4co(Tij — T)Cjj-

The most important feature of the adaptation model (5.1) is that the adaptation of in
parallel-vessel systems is unstable [19]. As shown in Fig. 5, in the parallel systems there
can be at most one survived vessel at the stable states. In Fig. 5(a), we show the adaptation
process of the two diameters in a parallel system shown in Fig. 5(b). A fixed pressure drop
is maintained in the simulation. The adaptation of two parallel vessels with fixed total flow
rates is similar. The instability of parallel systems indicates that it is energetically favorable
to deliver the fluid together instead of distributing the fluid into different tubes. This is
consistent with the concavity of the energy cost function E4 defined in the Eq. (4.2).

In Ref. [23], a model in the form of gradient flow with respect to the total energy
cost function E; (€) is introduced to describe the adaptation of general biological transport

networks
ac; (k) -
- =2
dt =cC éY"‘l —Te Cij’ (52)
ij
where %3 = c,u is the optimal wall shear stress (3.3). Note that the new form can be

used to naturally incorporate the fluctuation of flow rates into the model. In the sense of
linearisation, the behavior of this model is very similar to that of the adaptation model (5.1).
Thus the corresponding experimental observations are also consistent with this gradient
flow model. Optimal network structures are obtained at steady states as time tends to
infinity. From this point of view, the steady states shown in Fig. 5 are the local minima of
the total energy cost function and the adaptation trajectories are the gradient flows. This
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new model clearly shows that the adaptation process is a tool employed by life systems to
optimise the structure of transport networks.

6. Continuum Models of Initiation of Biological Transport Networks

Although the adaptation processes can lead to optimisation of biological transport net-
works, the emergence of transport networks in life systems is also of a particular interest.
As was already noted, there are different cell-based models, which emphasize the impor-
tance of such cellular mechanisms as cell migration and elongation. In the canalisation
hypothesis, the importance of auxin transport has been singled out as the stimulus in the
emergence of leaf veins. However, the importance of structural optimisation during the
network initiation has hardly been explored in these models.

Despite the migration and reuse of the endothelial cells of pruned vessels [8], initially
optimised biological transport networks may prevent frequent vessel pruning in vasculo-
genesis or angiogenesis processes. From this point of view, the cellular pathways, which
can incorporate structural optimisation during the initiation process of biological transport
networks, can significantly reduce the cost of the energy needed toe construct blood ves-
sel systems. For plants, their vascular cells cannot move freely. As the result, for plants
the pruning processes are even more energy-costly than for animals. Therefore, the initial
optimisation of transport networks is more important for plants.

In Ref. [24], a continuum model has been constructed as a general macroscopic princi-
ple underlying the cellular mechanisms in the initiation process. In this model, it is conjec-
tured that the total effective energy cost function is optimised during the initiation process
of biological transport networks.

Since transport processes are usually much faster than initiation ones, the transport
process of auxin and other mass can be described by the steady state diffusion equation

V- (A1) - VP(x,t)) =5, (6.1)

where P is the partial pressure generated by hormone — e.g. auxin, s the hormone source
produced in the tissue, and x and t are the spatial and temporal coordinates. The transport
tensor A is used to account pure diffusion effects, active transport, and pipe flow in veins.
The discretisation of the Eq. (6.1) is similar to discretisation of the Eq. (2.5). Adaptation
models for the transport tensor are introduced below. According to the restricted form of
A, continuum adaptation models are called scalar-, vector-, and tensor-based. The three
models have similar energy-cost functionals and all of them can lead to the formation of
optimal transport networks, though their dynamic behavior are slightly different.

6.1. Vector based model

As experimentally observed [4, 11,48, 69], active transport of auxin in leaf budding is
localised at specific paths. Transmembrane proteins are lined up along specific directions,
which determine the transport path. Following such observations, one describes the en-
hancement of active transport by polarisation vector m. The direction of m stands for the
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direction of active transport whereas its amplitude |m| quantifies the transport strength.
Consequently, the transport tensor is modeled as

A=DI+A=DI+m®m,

where D is the diffusion constant of the background substrate, I the identity tensor, and
® the tensor product. If |m| is sufficiently large — e.g. it exceeds a critical value m, the
vein of the transport network is formed. In this case, |m|? represents the conductivity of
the tube per unit area.

The total energy cost functional has the form

E= J ((vP-A-VP)+M(Im*) + a|Vm|*)dx,
Q

where 2 is the tissue domain and x the spatial coordinate. The term (VP-A-VP) represents
the average energy cost in mass transport for all different states with fluctuating fluxes and
M(]Jm|?) shows the material and metabolic energy cost of maintaining the active transport
or constructing the transport network edges. This function is usually assumed to be concave
for the formation of vascular segments, and very often one uses the power function M(C) =
¢,C”. We also note that a|Vml|? is the entropy cost associated with the diffusion of proteins
responsible for active transport.

The adaptation dynamics optimising the energy cost functional can be modeled by the
equation

aa—r? = DyAm + ¢ (((m -VP)VP) —M’(|m|2)m), (6.2)

where ¢, determines the time scale of the initiation process and Dy = 2¢ya is the diffusion
constant of the polarisation signal. The process is dominated by two factors competition —
viz. the polarisation of cells driven by hormone fluxes to enhance the delivery power and
the background contracting tendency to reduce the material and metabolic cost.
The energy cost functional E for the coupled system (6.1)-(6.2) satisfies the estimate
dE 1 2
— = ——J (DyAm+ ¢y ({(m- VP)VP) —M’'(Jm[*)m))” dx < 0.
dt ¢ Jq
This inequality implies that the energy consumption of the system decreases continuously.
As time increases, the state of the system approaches a stability point where an optimised
structure is obtained.

6.2. Scalar-based model

If transport power is isotropic instead of direction-specific, one can use A = AI to model
the enhancement of the transport power. In this case, an adaptation dynamics of A satisfies
the equation

04 ) .
3 =DyAA+ ¢, ((VP-VP)—M'(A)), (6.3)
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which can also lead the system to an optimal structure due to the following relation for the
energy cost functional:
dE_ 1

_‘__J (Do2AA+co ((IVP2) — M'(A))) dx.
dt ¢ Ja

Tensor-based model

The adaptation dynamics can be also described by the polarisation tensor A by the
equation
oA - - A
- = DoAA + ¢ ((VP ® VP) — M’(|A|)m) , (6.4)

where |A| is the Frobenius norm of A. Similarly, the energy cost functional satisfies

a__1
dt_ C1 Q

In the canalisation model [11], the authors consider the critical strength of active trans-
port. Above this critical strength, the cells are assumed to undergo cell differentiation to
form vessel segments. In continuum models, this idea is represented by the dual role of
the polarised transport tensor |A| — viz. if the magnitude |A| is greater than some critical
value A, the signal is strong enough and a vascular segment is formed at the principal
direction of |A|. In this case, the integral of |A| in a cross-section can be regarded as the
conductivity of the vascular segment. Furthermore, after the discretisation, the Eq. (6.1)
can be viewed as the Kirchoff laws (2.5) for flow distributions in the network, while (6.2)-
(6.4) are effectively reduced to the adaptation process of the segments (5.2), cf. [8,23,66].
In other words, the initiation and adaptation processes are integrated into a single model.
The domain |A| > A, forms a network-like structure, which can be regarded as the space
occupied by the biological transport network.

Fig. 6 shows that continuum models exhibit rich dynamics, which leads to the forma-
tion of a plethora of optimal structures. Note that for a fixed source distribution s, loopless
tree-like structures are obtained at steady states due to the concavity of the metabolic and
material cost function M. Besides, because of background diffusion in the transport equa-
tion (6.1), the bifurcation of branches ends at a particular length scale, below which the
pure diffusion is sufficiently effective to undertake the transportation tasks. The diffusion
term in the Egs. (6.2)-(6.4) introduces another length scale corresponding to the width of
the vascular segments. If both diffusion constants vanish in a limiting case, the bifurcation
never ends and a fractal structure is obtained.

Fig. 6 demonstrates that the network obtained by a tensor-based model appears to be
more regular than the one obtained by the vector-based model. This is due to the fact that
the polarisation direction changes more easily in the tensor based model. Similarly, in the
isotropic scalar-based model, the tree-like structure can be even more regular because of
the absence of polarisation directions. Fig. 6(a) contains fuzzy areas, which arose because
of the long time required to approach steady state in vector-based models.

2

~ - A
DyAA + ¢4 ((VP ® VP) —M’(|A|)m) dx.
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)

Figure 6: Optimal tree-like network structures obtained with (a) the vector-based model and (b) the
tensor-based model. Colors are used to indicate the amplitude of log(|A|> + D). A constant source (s = s,)
is uniformly distributed in the entire domain and a single sink is located at the center. The variance of
the random initial value of the polarisation vector is given by the diffusion constant +/D. The Neumann
boundary conditions are used in the simulation for both Eqs. (6.1) and (6.2). Parameters: D =1x 1072,
a=1x10"% ¢,=5x10"2% b=1, s,=1, y =0.5, and hexagon edge length is 1.

(@) (b)

Figure 7: An optimal loopy network obtained with the vector-based model with fluctuating sources.
(a) Magnitude of the polarisation vector. (b) Angle of the polarisation direction, which shows that the
polarisation vector on an edge is approximately tangential to the edge. The entire domain is divided into
900 small sub-domains. At each simulation step, sources on only 10 sub-domains are randomly selected
to be open. The Dirichlet boundary condition is applied for the Eq. (6.1) on the short left edge. The
Neumann boundary conditions are used for other boundaries and the adaptation equation. Parameters:
D=1x10°% a=1x10"°% ¢,=5%x10"%, b=1, s, =1, and y = 0.5. The length of the diamond edge
is 1.

In the case of fluctuations in the production of hormone source s, there are loops in
the networks formed by the initiation dynamics — cf. Fig. 7. The loop density is still an
increasing function of the fluctuation strength and a decreasing function of v.

7. Conclusion and Discussion

We have reviewed the development history on modeling and theoretical studies of bi-
ological transport networks. Following Murray’s theoretical work, studies on biological
transport network have been carried out along two paths — one emphasizes optimisation
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of energy cost and the other focuses on adaptation mechanism and relevant stimuli. These
approaches merge into a single model by incorporating the gradient flow of the total en-
ergy cost in the adaptation dynamics and the optimal network structures are obtained at
the steady states of the adaptation dynamics.

It is worth noting that the adaptation governed by the gradient flow with local stimuli
is in great consistency with experimental observations. It has been successfully employed
to explain the vessel pruning in embryol zebra fish [8]. The canalisation mechanism driven
by the gradient flow is also qualitatively consistent with experimental observations of the
leaf venation formations. In other words, under the stress of natural selection, life systems
develop various ways to optimise the total energy consumption for mass transportation.
For plants, the optimisation of the network structure is mainly achieved in the initiation
process since the cells cannot move freely. For animals, the structural optimisation is mainly
achieved by the adaptation process — endothelial cells of the pruned vessels can be reused
to form new vessels.

Nevertheless, there is a large amount of loops in the capillary bed. Current models still
cannot explain the stability of many loops. Meanwhile, the efficiency of capillary networks
is very crucial for animals. It remains a mystery how the angiogenesis and adaptation pro-
cess lead to stable and high-efficiency capillary networks. Note that only macroscopic sig-
nals such as the wall shear stress in blood vessels are involved in the macroscopic dynamics,
whereas the cellular dynamics, which achieves such an adaptation is masked. The optimi-
sation principle should also provide critical insights in the complete adaptation model for
the entire circulation system.

The beautiful mathematical structures of the models for biological transport networks
have attracted widespread interest. The nice robustness and high efficiency of optimal
transport networks can have wide applications in industrial and biomimetic network design
[27,46], such as three-D printed vascular networks.

Acknowledgments

This work is supported by the National Key R&D Program of China (2019YFA0709503),
the National Natural Science Foundation of China (Contract No. 11971312), and by the
Student Innovation Center, Shanghai Jiao Tong University.

References

[1] G. Albi, M. Artina, M. Foransier and PA. Markowich, Biological transportation networks: Mod-
eling and simulation, Anal. Appl. 14, 185-206 (2016).

[2] G. Albi, M. Burger, J. Haskovec, P Markowich and M. Schlottbom, Continuum modeling of
biological network formation, in: Active Particles 1, pp. 1-48, Springer (2017).

[3] A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno and C. Zhou, Synchronization in complex
networks, Phys. Rep. 469, 93-153 (2008).

[4] O. Avsian-Kretchmer, J. Cheng, L. Chen, E. Moctezuma and Z.R. Sung, Indole acetic acid dis-
tribution coincides with vascular differentiation pattern during arabidopsis leaf ontogeny, Plant
Physiol. 130, 199-209 (2002).



Optimisation of Biological Transport Networks 93

(5]
(6]
(7]
(8]
(9]
[10]
[11]
[12]
[13]

[14]
[15]

[16]

(17]
(18]
[19]
[20]
[21]
[22]
(23]
[24]
[25]
[26]
[27]

(28]

J.R. Banavar, E Colaiori, A. Flammini, A. Maritan and A. Rinaldo, Topology of the fittest trans-
portation network, Phys. Rev. Lett. 84, 4745 (2000).

S. Bohn and M.O. Magnasco, Structure, scaling and phase transition in the optimal transport
network, Phys. Rev. Lett. 98, 088702 (2007).

H. Chen, H. Leng, D. Wang and X. Wang, An efficient threshold dynamics method for topology
optimization for fluids, ArXiv:1812.09437 (2018).

Q. Chen, L. Jiang, C. Li, D. Hu, Ji. Bu, D. Cai and J. Du, Haemodynamics-driven developmental
pruning of brain vasculature in zebrafish, PLoS Biol. 10, e1001374 (2012).

E Corson, Fluctuations and redundancy in optimal transport networks, Phys. Rev. Lett. 104,
048703 (2010).

D. Desplanches, Structural and functional adaptations of skeletal muscle to weightlessness, Int.
J. Sports Med. 18, S259-5264 (1997).

P Dimitrov and S.W. Zucker, A constant production hypothesis guides leaf venation patterning,
Proc. Natl. Acad. Sci. U.S.A. 103, 9363-9368 (2006).

L. Donetti, PI. Hurtado and M.A. Munoz, Entangled networks, synchronization and optimal
network topology, Phys. Rev. Lett. 95, 188701 (2005).

B.R. Duling, Microvascular responses to alterations in oxygen tension, Circ. Res. 31, 481-489
(1972).

M. Durand, Architecture of optimal transport networks, Phys. Rev. E 73, 016116 (2006).

M. Durand, Structure of optimal transport networks subject to a global constraint, Phys. Rev.
Lett. 98, 088701 (2007).

D. Fang, S. Jin, P Markowich and B. Perthame, Implicit and semi-implicit numerical schemes
for the gradient flow of the formation of biological transport networks, SMAI J. Comput. Math.
5, 229-249 (2019).

A. Gaelle, R. Lagan and P, Prusinkiewicz, Reviewing models of auxin canalization in the context
of leaf vein pattern formation in arabidopsis, Plant J. 44, 854-865 (2005).

J. Grawer, H. Ronellenfitsch, M.G. Mazza and E. Katifori, Trophallaxis-inspired model for dis-
tributed transport between randomly interacting agents, Phys. Rev. E 96, 022111 (2017).

W.J. Hacking, E. VanBavel and J.A. Spaan, Shear stress is not sufficient to control growth of
vascular networks: a model study, Am. J. Physiol-Heart C. 270, H364-H375 (1996).

J. Haskovec, L.M. Kreusser and P Markowich, Rigorous continuum limit for the discrete network
formation problem, Commun. Partial Differ. Equations 44, 1159-1185 (2019).

J. Haskovec, P Markowich and B. Perthame, Mathematical analysis of a pde system for biological
network formation, Commun. Partial Differ. Equations 40, 918-956, (2015).

Q. Hong, J. Zhao and Q. Wang, Energy-production-rate preserving numerical approximations to
network generating partial differential equations, Comput. Math. Appl. 84, 148-165 (2021).
D. Hu and D. Cai, Adaptation and optimization of biological transport networks, Phys. Rev. Lett.
111, 138701 (2013).

D. Hu and D. Cai, An optimization principle for initiation and adaptation of biological transport
networks, Commun. Math. Sci. 17, 1427-1436 (2019).

D. Hu, D. Cai and A.V. Rangan, Blood vessel adaptation with fluctuations in capillary flow dis-
tribution, PloS One 7, e45444 (2012).

E.A. Jones, E le Noble and A. Eichmann, What determines blood vessel structure? genetic pre-
specification vs. hemodynamics, Physiology 21, 388-395 (2006).

E Kaiser, H. Ronellenfitsch and D. Witthaut, Discontinuous transition to loop formation in op-
timal supply networks, Nat. Commun. 11, 1-11 (2020).

A. Kamiya, R. Bukhari and T. Togawa, Adaptive regulation of wall shear stress optimizing vas-
cular tree function, Bull. Math. Biol. 46, 127-137 (1984).



94
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]

[37]

[38]
[39]
[40]
[41]
[42]
[43]
[44]

[45]

[46]

[47]
(48]
[49]
[50]

[51]

Y. Lu and D. Hu

E. Katifori, G.J. Szollosi and M.O. Magnasco, Damage and fluctuations induce loops in optimal
transport networks, Phys. Rev. Lett. 104, 048704 (2010).

J.B. Kirkegaard and K. Sneppen, Optimal transport flows for distributed production networks,
Phys. Rev. Lett. 124, 208101 (2020).

A. Koller and G. Kaley, Endothelial regulation of wall shear stress and blood flow in skeletal
muscle microcirculation, Am. J. Physiol-Heart C. 260, H862-H868 (1991).

A. Koller, D. Sun and G. Kaley, Role of shear stress and endothelial prostaglandins in flow-and
viscosity-induced dilation of arterioles in vitro, Circ. Res. 72, 1276-1284 (1993).

L. Kuo, WM. Chilian and M.J. Davis, Interaction of pressure-and flow-induced responses in
porcine coronary resistance vessels, Am. J. Physiol-Heart C. 261, H1706-H1715 (1991).

M.E Laguna, S. Bohn and E.A. Jagla. The role of elastic stresses on leaf venation morphogenesis,
PLoS Comput. Biol. 4, e1000055 (2008).

L. Lamalice, EL. Boeuf and J. Huot, Endothelial cell migration during angiogenesis, Circ. Res.
100, 782-794 (2007).

J.M. Lash and H.G. Bohlen, Functional adaptations of rat skeletal muscle arterioles to aerobic
exercise training, J. Appl. Physiol. 72, 2052-2062 (1992).

AM. Lewis, O. Mathieu-Costello, RJ. McMillan and R.D. Gilbert. Effects of long-term, high-
altitude hypoxia on the capillarity of the ovine fetal heart, Am. J. Physiol-Heart C. 277, H756—
H762 (1999).

B. Li, Long time behavior of the solution to a parabolic—elliptic system, Comput. Math. Appl. 78,
3345-3362 (2019).

B. Li, On the blow-up criterion and global existence of a nonlinear pde system in biological trans-
port networks, Kinet. Relat. Mod. 12, 1131 (2019).

B. Li and X. Li, A cross-diffusive evolution system arising from biological transport networks,
Commun. Nonlinear Sci. Numer. Simul. 92, 105465 (2021).

B. Li and J. Shen, Classical solution of a pde system stemming from auxin transport model for
leaf venation, Proc. Am. Math. Soc. 148, 2565-2578 (2020).

H.H. Lipowsky and B.W. Zweifach, Network analysis of microcirculation of cat mesentery, Mi-
crovasc. Res. 7, 73-83 (1974).

J. Liu and X. Xu, Partial regularity of weak solutions to a pde system with cubic nonlinearity, J.
Differ. Equations 264, 5489-5526 (2018).

Y. Lu, D. Hu and W. Ying, A fast numerical method for oxygen supply in tissue with complex
blood vessel network, PloS One 16, e0247641 (2021).

C. Lundby, M. Sander, G.V. Hall, B. Saltin and J.A. Calbet, Maximal exercise and muscle oxy-
gen extraction in acclimatizing lowlanders and high altitude natives, J. Physiol. 573, 535-547
(2006).

M. Mao, H. Bei, C.H. Lam, P Chen, S. Wang, Y. Chen, J. He and X. Zhao, Human-on-leaf-
chip: A biomimetic vascular system integrated with chamber-specific organs, Small 16, 2000546
(2020).

O. Mathieu-Costello and RJ. Agey, Chronic hypoxia affects capillary density and geometry in
pigeon pectoralis muscle, Resp. Physiol. 109, 39-52 (1997).

J. Mattsson, Z.R. Sung and T. Berleth, Responses of plant vascular systems to auxin transport
inhibition, Development 126, 2979-2991 (1999).

K.A. McCulloh, J.S. Sperry and ER. Adler, Water transport in plants obeys Murray’s law, Nature
421, 939-942 (2003).

K.S. McDonald, M.D. Delp and R.H. Fitts, Effect of hindlimb unweighting on tissue blood flow
in the rat, J. Appl. Physiol. 72, 2210-2218 (1992).

R.M. Merks, S.V. Brodsky, M.S. Goligorksy, S.A. Newman and J.A. Glazier, Cell elongation is



Optimisation of Biological Transport Networks 95

key to in silico replication of in vitro vasculogenesis and subsequent remodeling, Dev. Biol. 289,
44-54 (2006).

[52] G.J. Mitchison, A model for vein formation in higher plants, P Roy. Soc. Lond. B. Bio. 207,
79-109 (1980).

[53] G.J. Mitchison, The polar transport of auxin and vein patterns in plants, Philos. Trans. R. Soc.
London, Ser. B 295, 461-471 (1981).

[54] C.D. Murray, The physiological principle of minimum work: I the vascular system and the cost
of blood volume, Proc. Natl. Acad. Sci. U.S.A. 12, 207 (1926).

[55] T. Nelson and N. Dengler, Leaf vascular pattern formation, The Plant Cell 9, 1121 (1997).

[56] T. Nishikawa, A.E. Motter, Y. Lai and EC. Hoppensteadt, Heterogeneity in oscillator networks:
Are smaller worlds easier to synchronize, Phys. Rev. Lett. 91, 014101 (2003).

[57] TV. Oevelen and M. Baelmans, Numerical topology optimization of heat sinks, in: International
Heat Transfer Conference Digital Library, Begel House Inc. (2014).

[58] U. Pohl, J. Holtz, R. Busse and E. Bassenge, Crucial role of endothelium in the vasodilator
response to increased flow in vivo, Hypertension 8, 37-44 (1986).

[59] A.R. Pries, B. Reglin and T.W. Secomb, Structural adaptation of vascular networks: role of the
pressure response, Hypertension 38, 1476-1479 (2001).

[60] A.R. Pries and T.W. Secomb, Control of blood vessel structure: insights from theoretical models,
Am. J. Physiol-Heart C. 288, H1010-H1015 (2005).

[61] H. Ronellenfitsch and E. Katifori, Global optimization, local adaptation and the role of growth
in distribution networks, Phys. Rev. Lett. 117, 138301 (2016).

[62] H. Ronellenfitsch and E. Katifori, Phenotypes of vascular flow networks, Phys. Rev. Lett. 123,
248101 (2019).

[63] T. Sachs, The control of the patterned differentiation of vascular tissues, Adv. Bot. Res. 9, 151—
262 (1981).

[64] T. Sachs, The development of vascular networks during leaf development, Curr. Top. Plant
Biochem. Physiol. 8, 168-183 (1989).

[65] T. Sachs, Collective specification of cellular development, BioEssays 25, 897-903 (2003).

[66] T. Secomb, J.P Alberding, R. Hsu, M.W. Dewhirst and A.R. Pries, Angiogenesis: an adaptive
dynamic biological patterning problem, PLoS Comput. Biol. 9, 1002983 (2013).

[67] TV. Serebrovskaya, E.B. Manukhina, M.L. Smith, H.E Downey and R.T. Mallet, Intermittent
hypoxia: cause of or therapy for systemic hypertension, Exp. Biol. Med. 233, 627-650 (2008).

[68] J. Shen and B. Li, A priori estimates for a nonlinear system with some essential symmetrical
structures, Symmetry 11, 852 (2019).

[69] L.E. Sieburth, Auxin is required for leaf vein pattern in arabidopsis, Plant Physiol. 121, 1179-
1190 (1999).

[70] A. Tero, S. Takagi, T. Saigusa, K. Ito, D.P Bebber, M.D. Fricker, K. Yumiki, R. Kobayashi and
T. Nakagaki, Rules for biologically inspired adaptive network design, Science 327, 439-442
(2010).

[71] R. Thoma, Untersuchungen iiber die Histogenese und Histomechanik des Gefdsssystems, Enke
(1893).

[72] X. Xu, Partial regularity of weak solutions and life-span of smooth solutions to a biological net-
work formulation model, SN Partial Differ. Equations Appl. 1, 1-31 (2020).



