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Abstract. Dai et al. [Multiscale Model. Simul. 18 (2020)] proposed a gradient flow

model and a numerical scheme for ground state calculations in Kohn-Sham density func-
tional theory. It is a feature that orthonormality of all wave functions can be preserved

automatically during the simulation which makes such a method attractive towards sim-
ulations for large scale systems. In this paper, two extensions are proposed for further

improving the efficiency of the method. The first one is a linearization of the original

nonlinear scheme. It is shown analytically that both the orthonormality of wave func-
tions and the decay of the total energy can be preserved well by this linear scheme,

while a significant acceleration can be observed from the numerical experiments due

to the removal of an iteration process in the nonlinear scheme. The second one is the
introduction of the adaptivity in the algorithm both temporally and spatially — i.e. an

h-adaptive mesh method is employed to control the total amount of mesh grids, and
an adaptive stop criterion in time propagation process is designed based on an observa-

tion that total energy always decays much faster at the beginning. Plenty of numerical

experiments successfully demonstrate effectiveness of our method.
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1. Introduction

The Kohn-Sham density functional theory has been widely used in electronic structure
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calculations [22]. Due to the nonlinearity of the governing equation and the complexity

of electronic structure system, numerical solution became a main research area in the den-

sity functional theory, which plays an important role in applications such as the design of

functional materials and new energy development [10,12].

The solution of the Kohn-Sham equation [2, 27] by self-consistent field (SCF) itera-

tion is a popular approach to determine the ground state of electronic structure systems.

It has been realized in various mature software, including DFT-FE†, VASP‡, and Quantum

Espresso [14]. Several successful techniques have been developed for accelerating the sim-

ulation, such as adaptive mesh methods [1, 3, 23, 24], density mixing [20] and quality

solvers for generalized eigenvalue problems [8] with effective preconditioners [16] in SCF

iteration, Chebyshev filtering [29]. In spite of its popularity, the orthogonality constraint in

solving Kohn-Sham equation brings difficulty on fully taking advantage of hardware when

designing parallel algorithms. Another widely used approach is the imaginary time prop-

agation (ITP) method [18, 21]. The Wick rotation allows to transfer the complex-valued

time-dependent Kohn-Sham equation into a real-valued one. The ground state of a given

system can be obtained when the imaginary time approaches infinity.

Besides solving the Kohn-Sham equation, minimizing total energy of the system attracts

more and more attention recently. Several pioneer works are based on this idea. For ex-

ample, in [5, 28], Zhou group focused on gradient type methods and conjugate gradient

method for electronic structure calculations. Yang et al. [26] developed a new direct con-

strained optimization algorithm based on the projection of the total energy functional into

a sequence of subspaces and finding the minimizer of the energy functional on every sub-

space. A new iteration method based on the gradient on the Stiefel manifold has been

proposed in [28]. The main advantage of this approach is that the method avoids solving

nonlinear eigenvalue problems, so that the main cost is the assembling of the total energy

functional and operations on a manifold. However, it should be noted that [28] requires

an explicit operation in order to preserve the orthogonality of the wave functions and this

diminishes the efficiency of the simulations. To overcome this bottleneck, an infeasible

method was proposed for minimizing the total energy of a Kohn-Sham system [13], so that

the ground state can be gradually obtained, without explicit treatment of the orthogonality.

It is mentioned that recently an extended gradient flow based model for electronic struc-

ture calculations was proposed in [6], which is a time evolution problem and different from

either nonlinear eigenvalue problem or energy minimization problem. It is shown [6] that

this extended gradient exponentially decays over time t, and the equilibrium point of this

model corresponds to a local minimizer of the Kohn-Sham energy functional. Even better,

it has shown that the orthogonality of those wave functions can be automatically preserved

during the simulation. Furthermore, the gradient flow based model was used in a gen-

eral framework of orthogonality preserving schemes for electronic structure calculations —

cf. [7]. All these features demonstrate this method potential in large system simulations.

An implicit midpoint scheme employed in [6] for temporal discretization showed the

effectiveness of the algorithm. However, the room for further improvements of the algo-

†https://github.com/dftfeDevelopers/dftfe
‡http://cms.mpi.univie.ac.at/vasp
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rithm efficiency can be noted from the following two aspects. First of all, at each time step,

an iteration is needed to handle the problem nonlinearity. The evaluation of the Hartree

potential in this case has to be implemented several times, so is the derived linear system.

Secondly, due to the nonlinearity of the Kohn-Sham model and the complexity of molecu-

lar structure, an adaptive mesh method is much better to tailor the finite element space in

terms of numerical solution. Along with an adaptive strategy for time propagation, a faster

solution time can be expected.

Taking into account the above observation, we develop a linearized algorithm based

on the work [6]. From theoretical aspects, we analyze the energy decay behavior for the

proposed numerical scheme, such that the convergence of the total energy towards the

ground state can be guaranteed. In addition, it is possible to show that the orthonormality

of the wave functions can be preserved without explicit calculations. To further acceler-

ate the simulation, the adaptive strategies are studied with respect to spatial and temporal

discretizations. Due to the nonlinearity of the governing equation, it is nontrivial to con-

struct a quality mesh and the corresponding finite element space to represent the solution at

the initial time. Hence, a dynamical adjustment during the simulation becomes necessary,

based on the numerical solutions obtained during the process. This can be handled very

well by an adaptive mesh method. A classic procedure of adaptive mesh method includes

following steps:

· · · → solve → estimation → mark → refinement → · · · .

After a numerical solution is obtained in the current finite element space, an error distri-

bution is derived by an error estimation method. Finally, with a certain marking strategy,

a new mesh is generated by a local refinement of the current mesh, so it is a new finite

element space. In this paper, we use the recovery-type a posteriori error estimator, which

reconstructs an approximation of the second derivative of electron density ρ and computes

the element-wise H2 norm. We use the weighted averaging recovery scheme with a vol-

ume weight. In addition to spatial discretization, an adaptive strategy is also designed for

temporal discretization, with the size of time step is adaptively adjusted according to the

numerical solution. Besides, our numerical experiments show that the decay of the total

energy is always drastic at the beginning of the simulation in a given finite element space,

but it takes a longer time for a gentle decay of the total energy. Based on this observation,

a stopping criterion of numerical scheme is introduced to take full advantage of the initial

and fast decay of the energy, so that the final and fitting finite element space can be ob-

tained efficiently. The effectiveness of the above strategies in the simulation acceleration

can be observed from numerical experiments in Section 5.

The paper is organized as follows. In Section 2, we introduce notations and preliminar-

ies of the Kohn-Sham density functional theory. In Section 3, a full discretized scheme is

described. In Section 4, we introduce three accelerated strategies and propose a practical

adaptive computing algorithm. In Section 5, numerical experiments are presented to val-

idate the efficiency and convergence of the proposed method. Conclusion is given in the

last section, as well as future works.
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2. Gradient Flow Methods for Ground State Calculation

Let Ω be a bounded domain in Rn. We denote by (·, ·) the standard inner L2 product,

i.e.

(u, v) =

∫

Ω

u(x)v(x)d x .

Besides, ‖u‖= (u,u)1/2 is the associate L2 norm and ‖ · ‖1 refers to the H1 norm

‖u‖1 =
Æ

‖u‖2 + ‖∇u‖2.

For the Sobolev spaces

H1(Ω) :=
�

u ∈ L2(Ω) : ‖u‖1 <∞
	

,

H1
0(Ω) :=
�

u ∈ H1(Ω) : u|∂Ω = 0
	

,

we consider the setH = (H1
0(Ω))

N of vectors Ψ = (ψ1,ψ2, · · · ,ψN ), Φ= (φ1,φ2, · · · ,φN )

∈H and the inner product

〈ΨT
Φ〉 := (ψi ,φ j)

N
i, j=1 ∈ RN×N .

Consequently, the norm of Ψ is ||| Ψ |||= (Ψ,Ψ)1/2, where (Ψ,Ψ) = tr 〈ΨT
Ψ〉 and tr (A) is

the trace of matrix A. Then we introduce the Stiefel manifold

M N :=
�

U ∈ H : 〈U T U〉 = IN

	

,

where IN is the N × N identity matrix.

The Kohn-Sham density functional theory has two common methods to obtain the

ground state of a molecular system — viz. solving Kohn-Sham equation and minimizing

total energy of the Kohn-Sham system. For completeness, we briefly describe the methods

here.

We consider a molecular system consisting of M nuclei with the charges {Z1, Z2, · · · , ZM},
respective locations {R1,R2, · · · ,RM}, and N electron orbitals. The general Kohn-Sham en-

ergy functional has the form

E(U) =
1

2

N
∑

i=1

fi

∫

Ω

|∇ui(x)|2d x +

∫

Ω

Vex t(x)ρ(x)d x

+
1

2

∫

Ω

∫

Ω

ρ(x)ρ(x ′)

|x − x ′| d xd x ′+ Exc(ρ) (2.1)

for U = (u1,u2, · · · ,uN ). Here ui, i = 1,2, . . . , N are the Kohn-Sham orbitals, fi is the

occupation number of the i-th orbital, ρ(x) the electron density defined by

ρ(x) =

N
∑

i=1

fi |ui(x)|2,
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and Vex t(x) the external potential defined by

Vex t(x) = −
M
∑

k=1

Zk

|x − Rk|
.

The third term in (2.1) is the Hartree energy. In practice, the Hartree potential VHar(x) is

defined by

VHar(x) :=

∫

Ω

�

ρ(x ′)

|x − x ′|

�

d x ′.

It can be obtained by solving the Poisson equation with properly chosen conditions. The

fourth term in (2.1) is the exchange-correlation energy, to which some approximations,

such as local density approximation (LDA), general gradient approximation (GGA) [11] and

so on, should be applied. The functional derivative of Exc(ρ) gives the exchange-correlation

potential vxc(x) = δExc(ρ)/δρ(x). Following [6], we consider fi = 2, i = 1, . . . , N . For

the minimization of the total energy, a class of optimization methods can be applied — e.g.

gradient type methods with various orthogonalization technologies are presented in [5,28].

Note that the minimization problem

inf
U∈MN

E(U), (2.2)

on the Stiefel manifold U has been solved by an orthogonalization free method in [6]. The

approach there motivated our work here.

Another popular method for the ground state calculation consists in solving the Kohn-

Sham equation. Thus one considers the following Lagrange function:

L(U ,Λ) = E(U)− 1

2

∑

i, j

�

(ui,u j)−δi j

�

λi j, (2.3)

where Λ(λi j)N×N is a symmetric matrix. The necessary condition of the problem (2.2) is

∇U L = 0,

∇ΛL = 0.
(2.4)

Substituting (2.3) into (2.4) yields

∂ L

∂ ui

=

�

−1

2
∆+ Vex t + VHar + vxc

�

ui −
N
∑

j=1

u jλi j = 0. (2.5)

Assume that the eigenvector decomposition of Λ is

Λ= QT diag
�

λ̃1, λ̃2, · · · , λ̃n

�

Q, (2.6)

where Q = (qi j)N×N is an orthogonal matrix. Then

�

−1

2
∆+ Vex t + VHar + vxc

� N
∑

i=1

uiqik =

N
∑

i, j=1

u jλi jqik
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=

N
∑

j=1

u j

N
∑

i=1

λi jqik =

N
∑

j=1

u jq jkλ̃k = ũkλ̃k, (2.7)

where ũk =
∑N

j=1 u jq jk.

As before, we write (ui ,λi) to represent the wave functions and corresponding eigen-

values. Then the well-known Kohn-Sham equation is given as: Find (λi,ui) ∈ R−×H1
0(Ω),

i = 1,2, . . . , N such that

�

−1

2
∆+ Vex t + VHar + vxc

�

ui = λiui,

(ui ,u j) = δi j .

(2.8)

Among the two above approaches, solving Kohn-Sham equation for ground state is a classic

method popular in the fields of condensed matter and computational chemistry. Most of

mature software for ab-initio calculations are based on this approach. It should be pointed

out that the one of challenges in such an approach is the solution of a nonlinear eigenvalue

problem. For large systems, the orthogonality of those wave functions, as well as the pos-

sible Rayleigh-Ritz procedure employed in the method would cause the nontrivial issues to

efficiency and scalability of the algorithm. To avoid the orthogonalization operation in the

algorithm, various methods based on the optimization problem have been used. One of

them is a gradient flow method proposed [6], which can be described as follows. Thus in

order to solve the minimization problem (2.2), one tries to determine a function U(t) such

that the solution U∗ of (2.2) can be obtained when t →∞. More exactly, starting from an

initial value U0, the solution goes along a curve U = U(t) ∈ M N and till the minimization

point U∗ can be reached. Naturally, it is required that the values of the functional decrease

at the fastest rate along this curve U = U(t), i.e. at each point the direction of the curve

coincides with the direction of the fastest decrease of the functional. Therefore, the curve

U = U(t) has to satisfy the initial value problem

dU

d t
= −∇E(U), 0< t <∞,

U(0) = U0(x)

(2.9)

with the constraint U(t) ∈ M N .

A non-trivial challenge in solving the problem (2.9) is to always keep the solution U(t)

in M N during the simulations. This problem has been resolved by defining a gradient in M N ,

cf. [6,9]. For convenience, we recall this definition here.

We write the stand gradient of E(U) as

∇E(U) =
�

Eu1
, Eu2

, · · · , EuN

�

∈
�

H−1(Ω)
�N

,

where Eui
∈ H−1(Ω) is defined by

Eui
=
δE(U)

δui

.
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On the Grassmann manifold GN , the gradient of E(U) is defined according to [9] by

∇̃G E(U) =∇E(U)− U〈∇E(U), U〉T for all U ∈ M N .

In order to preserve the orthogonality [6], we extend the domain of ∇̃G E(U) from M N to

(H1
0(Ω))

N as follows:

∇GE(U) =∇E(U)〈U T U〉 − U〈∇E(U), U〉T for all U ∈
�

H1
0(Ω)
�N

.

Using the extended gradient ∇G, we write the gradient flow model based on DFT as

dU

d t
= −∇GE(U), 0< t <∞,

U(0) = U0(x).

By using the method in the density functional theory, Dai et al. [6] made the following

conclusions:

(i) Total energy decreases monotonically over time.

(ii) Solution converges exponentially to a local minimizer.

(iii) If the initial value belongs to the Stiefel manifold, then so is the solution.

Moreover, numerical experiments confirm the theoretical results. However, the method

in [6] is an implicit middle point scheme. Because of the nonlinearity of the governing

equation, an iteration method was used. As the result, the evaluation of Hartree potential

and solving the derived linear system have to be implemented several times during every

time propagation. In what follows, we employ a linear scheme, which allows to avoid the

issue mentioned. We also prove that the desired properties are preserved by our method.

3. A Structure-Preserving Linear Scheme

In this section, we consider a fully discretized scheme for the model [6]. Note that we

use a linear numerical scheme for temporal discretization and the standard linear finite ele-

ment method for spatial discretization. This linear scheme preserves the orthonormality of

wave functions and the decay of the total energy. Let us start with temporal discretization.

3.1. Temporal discretization

The gradient flow model studied in [6] has the form

dU

d t
= −∇GE(U), 0< t <∞,

U(0) = U0(x),
(3.1)

where the initial condition U0(x) ∈ M N . The linear scheme used in our method is given as

follows.



306 G. Hu, T. Wang and J. Zhou

Let {tn : n= 0,1,2,3, . . .} ⊂ [0,+∞) be the discretization points such that

0= t0 < t1 < t2 < · · · < tn < · · · .
Adopting the notation

Un+1/2 =
Un + Un+1

2
, (3.2)

we write
Un+1 − Un

∆tn

= −AUn
Un+1/2, (3.3)

where

AUn
=
�

∇E(Un), Un

	

:=∇E(Un)U
⊤
n − Un∇E(Un)

⊤.

Dai et al. [6] showed that if the initial condition is in M N , then at any successive time steps

the numerical solutions they obtained, also belong to M N . In other words, the orthogo-

nality of the wave functions should not be preserved explicitly. This is the most attractive

feature of the method. We want to show that the linear scheme above also preserves the

orthonormality. More exactly, we have the following result.

Proposition 3.1. If U0 ∈ M N and Un is obtained from (3.3), then Un ∈ M N .

Proof. The relations (3.2) and (3.3) give

Un+1 − Un

∆tn

= −
AUn

Un + AUn
Un+1

2
,

Un+1 − Un = −
∆tn

2
(AUn

Un + AUn
Un+1),

w

�

I +
∆tn

2
AUn

�

Un+1 =

�

I − ∆tn

2
AUn

�

Un,

Un+1 =

�

I +
∆tn

2
AUn

�−1�

I − ∆tn

2
AUn

�

Un.

Moreover, since Aun
= −AT

un
and

�

I − ∆tn

2
AUn

�−1�

I +
∆tn

2
AUn

�−1

=

�

I +
∆tn

2
AUn

�−1�

I − ∆tn

2
AUn

�−1

,

we have



U T
n+1Un+1

�

=

®
�
�

I +
∆tn

2
AUn

�−1�

I − ∆tn

2
AUn

�

Un

�T ��

I +
∆tn

2
AUn

�−1�

I − ∆tn

2
AUn

�

Un

�
¸

=

��

U T
n

�

I +
∆tn

2
AUn

��

I − ∆tn

2
AUn

�−1 �

I +
∆tn

2
AUn

�−1 �

I − ∆tn

2
AUn

�

Un

��

=

��

U T
n

�

I +
∆tn

2
AUn

��

I +
∆tn

2
AUn

�−1 �

I − ∆tn

2
AUn

�−1 �

I − ∆tn

2
AUn

�

Un

��

=



U T
n

Un

�

= I .
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In addition, we consider the decay of the total energy. It is needed in order to guarantee

the convergence of the solutions to the ground state of a given system.

Proposition 3.2. Assume that U0 ∈ M N , Un is obtained from (3.3), ∆tn is extremely small,

and ∇E(U) is Lipschitz continuous in the M N , i.e.

||| ∇E(U)−∇E(V ) |||≤ L ||| U − V ||| for all U , V ∈ M N . (3.4)

Then

E(Un+1)≤ E(Un). (3.5)

Proof. Introduce the function

g(t) := tUn+1 + (1− t)Un, t ∈ [0,1].

Assuming that E(g(t)) is differential in (0,1) implies the existence of a number ξ ∈ (0,1)

such that

E(Un+1)− E(Un) = E
�

g(1)
�

− E
�

g(0)
�

=
d(E(g(t)))

d t

�

�

�

t=ξ
· (1− 0)

= tr
¬

∇E
�

g(ξ)
�T

g′(ξ)
¶

= tr
¬

∇E
�

g(ξ)
�T
(Un+1 − Un)
¶

= −∆tntr
¬

∇E
�

g(ξ)
�T

AUn
Un+1/2

¶

. (3.6)

Using (3.2) and (3.3) yields

Un+1/2 =

�

I +
∆tn

2
AUn

�−1

Un. (3.7)

Substituting (3.7) into (3.6) gives

tr
¬

∇E
�

g(ξ)
�T

AUn
Un+1/2

¶

= tr

�

∇E
�

g(ξ)
�T

AUn

�

I +
∆tn

2
AUn

�−1

Un

�

= tr
¬

∇E
�

g(ξ)
�T

AUn
Un

¶

− ∆tn

2
tr
¬

∇E
�

g(ξ)
�T

AUn
AUn

Un

¶

+ o(∆tn). (3.8)

Note that (∆tn/2)tr 〈∇E(g(ξ))T AUn
AUn

Un〉 is of higher order than tr 〈∇E(g(ξ))T AUn
Un〉.

Hence, only the later should be estimated. Writing

tr
¬

∇E
�

g(ξ)
�T

AUn
Un

¶

= tr
¬

∇E
�

g(0)
�T

AUn
Un

¶

+ tr
¬

∇E
�

g(ξ)− E(g(0))
�T

AUn
Un

¶

. (3.9)

we consider the first item of (3.9), i.e.§

tr
¬

∇E
�

g(0)
�T

AUn
Un

¶

= tr
¬

∇E
�

g(0)
�T

Ag(0)g(0)
¶

§See Remark 3.1 for more detail.
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= −1

2
tr



(Ag(0))
2
�

=
1

2
tr
¬

A∗
g(0)

Ag(0)

¶

=
1

2
‖Ag(0)‖2. (3.10)

We obtain

||| Ag(0)g(0) |||≤ ‖Ag(0)‖ ||| g(0) |||≤
p

N‖Ag(0)‖. (3.11)

Thus,

tr
¬

∇E
�

g(0)
�T

AUn
Un

¶

= tr
¬

∇E
�

g(0)
�T

Ag(0)g(0)
¶

≥ 1

2N
||| Ag(0)g(0) |||2 . (3.12)

Considering the second term in (3.9), we write

tr
¬

∇E
�

g(ξ)− E(g(0))
�T

AUn
Un

¶

≤ L ||| g(0)− g(ξ) ||| · ||| Ag(0)g(0) |||
≤ L∆tn ||| AUn

Un+1/2 ||| · ||| Ag(0)g(0) |||
≤ L∆tn ||| AUn

(I + (∆tn/2)AUn
)−1Un ||| · ||| Ag(0)g(0) |||

≤ L∆tn ||| AUn
Un ||| · ||| Ag(0)g(0) ||| +o(∆tn)

≤ L∆tn ||| Ag(0)g(0) |||2 +o(∆tn). (3.13)

Finally, (3.5) follows from (3.6), (3.8), (3.9), (3.12) and (3.13).

Remark 3.1. The relation

tr



∇E(U)T AU U
�

= −1

2
tr



(AU)
2
�

has been used in the proof of (3.10). Now we want to prove it. Since

AU =∇E(U)U T − U∇E(U)T ,

we write

tr



(AU )
2
�

= tr

�

∇E(U)U T − U∇E(U)T
��

∇E(U)U T − U∇E(U)T
��

= tr



∇E(U)U T∇E(U)U T + U∇E(U)T U∇E(U)T
�

− tr

�

∇E(U)U T U∇E(U)T + U∇E(U)T∇E(U)U T
��

= 2tr



∇E(U)T U∇E(U)T U
�

− 2tr



∇E(U)T∇E(U)U T U
�

. (3.14)

On the other hand,

tr

�

∇E(U)T AU U
��

= tr



∇E(U)T
�

∇E(U)U T − U∇E(U)T
�

U
�

= tr



∇E(U)T∇E(U)U T U
�

− tr



∇E(U)T U∇E(U)T U
�

= −1

2
tr



(AU)
2
�

.

Comparing it with (3.14) gives the result.
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It can be observed that with the linear scheme (3.3), an obvious advantage in the simu-

lation is that, both the evaluation of the Hartree potential and the solving the linear system

need to be implemented one time in each time propagation. Our numerical experiments

would clearly show this advantage.

In order to get a fully discretized scheme, we next employ the finite element method

for spatial discretization.

3.2. Spatial discretization

We assume that the computational domain Ω ⊂ R3 is bounded. Let Th be a tetrahedral

partition of Ω. Let τ refer to the elements of Th, and let Sh be the standard Lagrange finite

element space on Th. More exactly, for an integer r ≥ 1, we have

Sh :=
�

vh ∈ C(Ω) : vh|τ ∈ Pr for all τ ∈ Th, vh|∂Ω = 0
	

,

where Pr is the space of polynomials of the degree at most r.

The fully-discrete problem of (3.3) consists in finding Un+1
h
∈ (Sh)

N such that

�

Un+1
h

, Vh

�

− ∆tn

2
an

�

Un+1
h

, Vh

�

=
∆tn

2
an

�

Un
h

, Vh

�

+
�

Un
h

, Vh

�

for all Vh ∈ (Sh)
N , (3.15)

where Un
h

is given and

an(U , V ) =
�

∇E(Un
h
)〈Un

h
, U〉, V
�

−
�

Un
h
〈∇E(Un

h
), U〉, V
�

.

Remark 3.2. The coefficient matrix of the linear system (3.15) is full, which can influence

the simulation efficiency. However, this matrix is the sum of a mass matrix and a number

of full matrices which are the outer products of two vectors. Therefore, an efficient matrix

vector multiplication can be implemented.

Remark 3.3. We employ a GMRES solver is in (3.15). In simulation the time step ∆tn

is always small ranging from 1.0 × 10−6 to 1.0 × 10−3. Therefore, the mass matrix M is

a good preconditioner for the GMRES method. In addition, the previous value Un is a good

candidate for the initial value in GMRES. With these two strategies, a good performance of

GMRES is observed in our simulations.

4. Acceleration Strategies

The improvement of the efficiency can be achieved from the numerical scheme above,

based on our numerical experiments. Further improvements can be derived by adaptive

mesh method, adaptive time step, and adaptive stop criterion towards generating an op-

timal finite element space during the simulations. Below we describe these strategies in

more detail.

First we introduce an h-adaptive mesh method. In Kohn-Sham Hamiltonian, due to the

nonlinearity and the existence of singularity, it is nontrivial to give a quality mesh and cor-

responding finite element space for representing the solution at the initial time. Therefore,
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a dynamical adjustment based on the numerical solutions obtained in simulations becomes

a necessity. To resolve these issues, a classical h-adaptive mesh method is employed. The

general h-adaptive mesh method can be illustrated as follows:

· · · → solve→ estimation→mark→ refinement→ · · · .
More precisely, to get Tk+1 from Tk, we first solve the discrete equation (3.15) on the

current mesh Tk to obtain an approximate solution and compute an error indicator ηk,τ.

Using the error indicator and the Dörfler’s marking strategy, some elements are marked

and then refined. Finally, a new finite element space Tk+1 will be built, and the numerical

solution will be updated from old space to the new space. In our work, we use recovery

type error estimation to construct the error indicator

ηh,τ = hτ

∫

τ

|∇R(∇ρ)|2d x. (4.1)

The definition of the recovery operator R can be found in [25].

In addition to the acceleration strategy above, we also adopt the following adaptive

stopping criterion strategy. By Proposition 3.2, the energy decreases over time. However,

as it found in our experiments, the total energy drastically decreases only during a few initial

steps. After that, it will take a very long time to correct to the lowest energy — cf. Fig. 4

and the right part of Fig. 6. Based on such observation, it would be a reasonable strategy

to just make stop after the drastic decay and use that solution to introduce the h-adaptive

process. In our work, when the rate of decrease is very slow, we stop this propagation and

refine the mesh to speed up the energy decay. In this way, the efficiency of the algorithm

can be greatly improved. Furthermore, we have to point out that it is important to use

certain standards to judge the energy decrease rate. We use the first derivative of total

energy in time. When this quantity is smaller than ε, we think that the rate of energy decay

is too slow. That is, when the following condition satisfies:

E(Un)− E(Un+1)

∆tn
< ε,

we stop calculation with the current mesh and call for the h-adaptive algorithm to prepare

a new mesh for the next computing round. Note that this criterion ε should not be too

small.

In addition to the h-adaptive and stop criterion in the time propagation, we also employ

an adaptive time step strategy. Theoretically, the exact solution of the gradient flow problem

can be reached when time t approaches infinity, which means a large size of time step is

desired to speed up the simulation. Due to the nonlinearity of the governing equation,

an adaptive strategy is needed to determine the size of the time step locally. The detailed

process is as follows. First, we set∆t =min h2
τi

, where τi is the i-th element of the current

mesh. Then if∆t is too large, namely E(Un)− E(Un+1) < 0, we reduce the time step — i.e.

we set ∆t = ∆t/2. Finally, we can also try to increase the time step after every 200 steps

by ∆t = 2∆t.

Combining the above strategies, we present the following algorithm, and our experi-

ment results show its effectiveness.
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Algorithm 4.1 Adaptive computing.

1: Set k = 0, n = 0, given an adaptive initial grid T0 and initial value U0
0 ∈ (S0)

N ∩ M N .

Choose a positive integer max re f ine based on the computer memory.

2: Choose ∆t =min(hτi
)2, τi is the ith element of current mesh Tk.

3: Find Un+1
k
∈ (Sk)

N such that

�

Un+1
k

, Vk

�

− ∆t

2
an

�

Un+1
k

, Vk

�

=
∆t

2
an

�

Un
h

, Vk

�

+
�

Un
k
, Vk

�

, ∀Vk ∈ (Sk)
N .

4: If (E(Un+1
k
)≥ E(Un

k
)), set ∆t =∆t/2 and go back to line 3.

5: If (mod(n, 200) == 0), set ∆t = 2∆t.

6: If ((E(Un
k
)− E(Un+1

k
))/∆tn < ε), U end

k
= Un+1

k
goto line 7; else set n = n+1 and go

back to line 3.

7: If (k<max re f ine ) goto line 8 ; else stop the whole simulation.

8: Estimate. Compute an error indicator ηk,τ on Tk.

9: Mark. Select the minimal elements set Mk ⊂ Tk such that

∑

τ∈Mk

η2
k,τ ≥ θ
∑

τ∈Tk

η2
k,τ for some θ ∈ (0,1).

10: Refine. Bisect the marked element Mk and get the mesh Tk+1.

11: Set U0
k+1
= U end

k
, and orthogonalize U0

k+1
, n= 0, k = k+ 1, go back to line 2.

5. Numerical Examples

In this section, we show the performance of the method. It is divided into three parts.

In the first part, using the same mesh, we compare our scheme (3.3) and the nonlinear

scheme in [6] in terms of the total energy, time propagation steps and the total number of

linear systems that have to be solved in simulations. Moreover, the propositions established

in Section 3 are verified numerically. In the second part, we show the numerical behavior

of Algorithm 4.1, from which the advantages from three acceleration strategies can be

observed clearly. In the last part, the robustness of our algorithm is demonstrated — i.e.

we show that our algorithm is not sensitive to the selection of the initial values.

The hardware for the simulations is a Dell OptiPlex 7060 workstation with Inter(R)

Core(TM) i7-8700 CPU @3.20 GHz and 8.00 GB of memory, while the code for the simula-

tion is developed based on the iFEM package [4]. Some parameters, such as the time step

∆t, computation domain Ω, and stop criterion ε, have no common principles in selection.

Based on our numerical experience, we chose parameter values depending on the problem

considered.
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5.1. Comparison and properties testing

Following the ideas of [19], we construct a good quality mesh and compare the perfor-

mance of our scheme (3.3) with the scheme [6]. In the next two examples, we set time step

∆t = 1.0e−3 and choose a random initial value. The stop criterion for the ground state is

||| ∇G E(U) |||< 1.0e−8.

Example 5.1. Consider the gradient flow model for a helium (He) atom with 1 electron

orbital. The position of the nucleus is the origin. We set external potential Vex t(x) =

−2|x |−1 and electron density ρ(x) = 2|u(x)|2. The Hartree potential is obtained by solving

the Poisson equation

−∇2VHar (x) = 4πρ(x)

with the zero Dirichlet boundary conditions. The evaluation of exchange-correlation po-

tential follows the work [15]. The computational domain is Ω1 = (−10000,10000)3.

In this example, we choose a computational domain large enough to simply calculate

the Hartree potential. The left part of Fig. 1 shows the nonuniform mesh for simulation of

a helium atom which includes 10381 nodes. Note that the singularity is well captured. The

left part of Fig. 2 shows the energy curves obtained by our scheme (3.3) and the nonlinear

scheme [6]. Both energies decay monotonically, consistent with Proposition 3.2. The time

propagation steps and the total number of linear systems to be solved in the simulation

are shown in Table 1. Although the time propagation steps required by our scheme (3.3)

is a bit higher than for the nonlinear scheme, the number of linear systems to solve is

much smaller. The reason is that with the help of linearization of scheme (3.3), both the

evaluation of the Hartree potential and solving the derived linear system are implemented

only once at each propagation step. Consequently, the acceleration of the simulations can be

expected. The right part of Fig. 2 shows the normalization of the wave function, consistent

with Proposition 3.1.

Figure 1: Left: Nonuniform mesh of 10381 nodes for simulation of a He atom. Right: Nonuniform mesh
of 12351 nodes for simulation of a LiH molecule.
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Figure 2: Left: Performance of linear scheme (3.3) and nonlinear scheme in [6]. Right: L2 norm of u.

Table 1: A comparison between linear scheme (3.3) and nonlinear scheme in [6].

Linear scheme (3.3) Nonlinear scheme in [6]

No. of time steps No. of linear systems No. of time steps No. of linear systems

|rule He 31075 31075 28182 76312

LiH 4730 4730 4652 13415

Example 5.2. Consider the gradient flow model for a lithium hydride (LiH) molecule with 2

electron orbitals. The positions of nuclei are as follows: lithium atom R1 = (−1.0075,0,0),

hydrogen atom R2 = (2.0075,0,0). Set the external potential Vex t(x) = −3|x − R1|−1 −
|x − R2|−1 and electron density ρ(x) = 2(|u1(x)|2 + |u2(x)|2). The Hartree potential is

obtained by solving the same Poisson equation with the boundary conditions given by the

multipole expansion [1]. The evaluation of exchange-correlation potential is the same as

in Example 5.1. We set the computational domain Ω2 = (−10,10)3.

The right part of Fig. 1 shows the nonuniform mesh for the simulation of a LiH molecule

which includes 12351 nodes. We note that many more mesh points are located near the

two singularities. The molecular structure of LiH and the contour of the electron density

Figure 3: Left: Molecular structure of LiH [6]. Right: The contour plot of the electron density.
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Figure 4: Performance of linear scheme (3.3) and nonlinear scheme in [6].
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Figure 5: Left: L2 norm of u1. Middle: L2 norm of u2. Right: Inner product between u1 and u2.

are shown in Fig. 3. Fig. 4 shows energy curves obtained by two different schemes. The

results by our scheme (3.3) are in good qualitative agreement with the ones obtained by

the nonlinear scheme [6]. Comparing the total number of linear systems to be solved — cf.

Table 1, we see that our scheme (3.3) delivers the same accurate numerical solutions in a

much smaller time. Fig. 5 shows the orthonormality of the wave functions, consistent with

the Proposition 3.1.

5.2. Efficiency improvement

Examples 5.1-5.2 indicate that with a good initial mesh, our scheme (3.3) works well in

the ground state calculations of small molecule structures. However, if the grid is fixed and

time moves, the total energy decreases more and more slowly. Therefore, here we apply

Algorithm 4.1 with acceleration strategies to calculate the ground state of the methane

molecule. In the next example, the stop criterion is set to as ε = 0.75 and the initial value

is randomly chosen.

Example 5.3. Consider the gradient flow model for a methane (CH4) molecule with 5

electron orbitals. The positions of nuclei are as follows: carbon atom R1 = (0,0,0), hy-

drogen atoms R2 = (1.3092,1.3092,1.3092), R3 = (−1.3092,−1.3092,1.3092), R4 =

(1.3092,−1.3092,−1.3092) and R5 = (−1.3092,1.3092,−1.3092). We set the external
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potential

Vex t(x) = −6|x − R1|−1 −
5
∑

i=2

|x − Ri|−1

and the electron density

ρ(x) = 2

5
∑

i=1

|ui(x)|2.

The evaluations of the Hartree potential and the exchange-correlation potential are the

same as in Example 5.2. The computational domain is Ω2 = (−10,10)3.

The left part of Fig. 6 shows the energy curve obtained by Algorithm 4.1. Note that the

curve looks like a staircase, which is not smooth enough. This is because of the influence of

the adaptive refine method. When the mesh is refined, we found that at the beginning the

energy decreases drastically, and it takes a very long time to converge to the lowest energy.

If we refine the mesh locally again, the energy decreases drastically again. We proceed in

the same way till a satisfactory result is obtained. It is worth noting that the efficiency of

simulations is greatly improved by using Algorithm 4.1 with an appropriate termination

condition.

For comparison, we carry out another experiment. We use the finest grid generated

by the adaptive Algorithm 4.1 as the initial computed grid, and the same initial value for

calculation but do not refine the mesh in the computing process. The right part of Fig. 6

shows that the energy drops and converges to a solution of the similar accuracy, but it

costs about three times as long as the former. The reason is that if choosing a suitable

termination, these gradient flow methods always converge quickly at the beginning. Once

it is judged that the convergence rate is too slow, we refine the grid to generate a new mesh,

so that our calculation is always in a state of fast convergence. In the previous coarse grid

calculation, the termination condition may be rough, but it is not necessary to calculate

accurately, which can be understood as pre-optimization. The molecular structure of CH4

and the contour of the electron density are shown in Fig. 7.
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Figure 6: Left: Computed by Algorithm 4.1, cost CPU time 3520 seconds. Right: Computed by scheme
(3.3) based on finest grid and time adaptive, cost CPU time 12530 seconds.
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Figure 7: Left: Molecular structure of CH4 [15]. Right: The contour plot of the electron density.

5.3. Sensitivity to initial value choice

Robustness is a desired property for the numerical method. In our simulations, it is

found that the convergence of the Algorithm 4.1 is not sensitive to the selection of the initial

values, which shows the robustness of our method. We demonstrate this by an example.

The stop criterion here is set to ε= 0.5.

Example 5.4. Consider the gradient flow model for a water (H2O) molecule with 5 electron

orbitals. The positions of nuclei are as follows: oxygen atom R1 = (0,0,0.12), hydrogen

atoms R2 = (0,0.762,−0.479) and R3 = (0,−0.762,−0.479). We set external potential

Vex t(x) = −8|x − R1|−1 −
3
∑

i=2

|x − Ri|−1

and the electron density

ρ(x) = 2

�

5
∑

i=1

|ui(x)|2
�

.

The evaluations of the Hartree potential and the exchange-correlation potential are the

same as in Example 5.2. The computational domain is the cube Ω3 = (−100,100)3.

Results shown in Fig. 8 are obtained by the same algorithm but with different initial

values. In the left part of Fig. 8, the initial value is given by the interpolation of a convergent

solution from a coarser mesh, while the initial value in the right part of Fig. 8 is set randomly.

From the results, it can be seen clearly that the convergence behaviors of both results look

quite similar to each other, and that both results converge to the reference value -75.11 [17].

In addition, around the end of the simulation, the solution has already close to the ground

state total energy, based on this criterion ε. It can be expected that just a few iteration steps

can give us one situation at the criterion satisfied and we can jump to the next h-adaptive

process. We also note that the energy decreases faster at the end of process, and in all

examples above, random initial guesses work well. This demonstrates the robustness of

the method.
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Figure 8: Left: Energy curve, coarse grid solution as the initial value. Right: Energy curve, a random
initial value.

6. Conclusions

We propose a linear scheme to improve the computational efficiency of a numerical

method for a gradient flow model [6] and study the energy decay and the preservation of

the wave functions orthonormality. In order to handle the nonlinearity of the governing

equation and the singularity of the external potential, we develop an algorithm combining

various acceleration strategies based on the h-adaptive meshes, adaptive time steps and

adaptive stop criterion. Numerical experiments show that these strategies substantially

improve the simulation efficiency.

Experiments also show that our numerical approach preserves the orthonormality of the

wave functions and the energy decay for fixed meshes. Besides, in the examples considered

our method spent less time in order to obtain approximate solutions of the same accuracy

as the non-linear scheme mentioned. Other examples demonstrate the improved efficiency

of the algorithm in simulating a complex molecular system and its successful work even

when it starts with a random value.

In the future, we will continue to study the algorithms related to this kind of problems,

and further accelerate the speed of the current algorithm. It is known that the Algorithm 4.1

is not insensitive to the initial value, and the Newton iterative method has quadratic con-

vergence. Hence, the combination of two methods will be studied to take the advantages

from both.
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