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Abstract. In its simplest form, convolution neural networks (CNNs) consist of a fully

connected two-layer network g composed with a sequence of convolution layers T . Al-

though g is known to have the universal approximation property, it is not known if

CNNs, which have the form g ◦ T inherit this property, especially when the kernel size

in T is small. In this paper, we show that under suitable conditions, CNNs do inherit the

universal approximation property and its sample complexity can be characterized. In ad-

dition, we discuss concretely how the nonlinearity of T can improve the approximation

power. Finally, we show that when the target function class has a certain compositional

form, convolutional networks are far more advantageous compared with fully connected

networks, in terms of the number of parameters needed to achieve the desired accuracy.
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1. Introduction

Over the past decade, convolutional neural networks (CNNs) have played important

roles in many applications, including facial recognition, autonomous driving, and disease

diagnosis. Such applications typically involve approximating some oracle f ∗, which can

be a classifier or regressor, by some f chosen from an appropriate model or hypothesis

space. In other words, learning involves minimizing the distance between f ∗ and f over

its hypothesis space.

Unlike plain fully connected neural networks, convolution neural networks are of the

form f = g ◦ T where g ∈ G is a fully connected classification/regression layer and T ∈ T
is a feature extractor typically composed of interfacing convolutions and nonlinear activa-

tions. From the approximation theory viewpoint, one important direction of investigation

is the universal approximation property (UAP), namely whether {g ◦ T : g ∈ G , T ∈ T }
can approximate arbitrary continuous functions on compact domains. The UAP is known

to hold in the case of one-hidden-layer, fully connected neural networks for a large class

of activation functions [1, 10, 18]. However, for the CNN architecture this is less obvious,

even if a fully-connected layer g is present. This is especially so if T consists of convo-

lutions of small filter sizes or the output dimension of T is small, which leads to a loss

of information. For example, for classification problems if T maps two samples belong to

two different classes into the same feature representation, then it is obvious that no matter

what the approximation power of g is, g ◦T cannot correctly classify them. Hence, the first

goal of this paper is to show that we can in fact construct CNNs which ensures that when

composed with g, forms a universal approximator for classification problems. The key is

showing that the convolution-based feature extractors can satisfy the so-called separable

condition [23], i.e.

|T (x i)− T (x j)| > c, ∀x i ∈ Ωi, x j ∈ Ω j, i 6= j (1.1)

for some positive constant c. Here, Ωi represents the set of samples belonging to the i-th

class. Recall that due to small filter sizes and possible dimensional reduction, the satisfac-

tion of this condition for convolution layers is not immediate and the first goal of this paper

is to construct convolution feature extractors that satisfy (1.1) under appropriate sparsity

assumptions on the input data, which then allows us to show that a class of practical CNN

architectures satisfy the universal approximation property.

Besides the convolutional structure, another important component in CNNs is the non-

linear activation function. Commonly used non-linear functions include sigmoid, tanh, and

(Leaky) ReLU. These activation functions introduce non-linearity into neural networks and

greatly expand their approximation capabilities. In the preceding UAP analysis of CNNs,

the effect of non-linearity was not explicitly studied. In fact, in the literature there generally

lacks concrete analysis of the advantage of non-linearity, besides general statements such

as having a bigger approximation space. In the second part of this paper, we concretely in-

vestigate the effect of nonlinear functions in terms of the approximation power by showing

that a composition function approximator with non-linear structure can locally improve its

approximation, which is not the case for its linear counterpart. More specifically, we estab-
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lish that if we perform function approximation by composition sequentially, non-linearity

allows us to make local progress.

The above analyses demonstrate qualitative approximation properties, but they do not

highlight the advantage of CNNs over traditional architectures, such as deep fully connected

neural networks. Moreover, the role of depth is not explicitly considered. Therefore, the

last important component of CNNs we discuss is the hierarchical structure, which under-

lies the success of deep learning over shallow neural networks in many complex tasks,

e.g. image classification, natural language processing. In practice, it has been shown that

the compositional structure in CNNs progressively extracts useful information. However,

understanding its theoretical advantage is a largely unsolved problem. Motivated by multi-

scale analysis, here we elucidate the interplay between hierarchical structure and model

complexity. More concretely, we show that if we assume the target oracle f ∗ has a com-

positional form, then a significantly less number of parameters is required for CNNs to

approximate it as compared to their fully connected counter-parts. In fact, the reduction

is exponential in the number of composition levels, implying that deep convolutional net-

works are far more advantageous than deep fully connected networks for approximating

compositional functions.

We close this section by discussing some related work to the current paper. Under-

standing how convolutional neural networks work is one of the central open problems in

the community of deep learning. Many researchers have attempted to answer this question

from various perspectives. While no complete solution has been developed so far, each

attempt extends our understanding of the internal mechanism of convolutional neural net-

works. Next, we mainly review the existing works closely related to this paper.

One of the classical results for neural networks is the universal approximation prop-

erty (UAP) of shallow networks [1, 10, 18], i.e. a neural network with one hidden layer

can approximate any continuous function defined on a compact set to arbitrary precision

with enough hidden units. More recently, non-asymptotic analysis of the relationship be-

tween approximation errors and number of neurons in multi-layer neural networks has

been developed [33]. More abstractly, the approximation of functions by composition was

investigated in [19], in which a multi-layer neural networks serve as a means of numeri-

cal implementation. Despite the theoretical guarantee, deep fully connected networks are

seldom used in practice. More sophisticated structures (e.g. multi-layer convolutional net-

works) are preferred, and often yield surprisingly good performance. Therefore, in recent

years, many works have attempted to analyze the approximation properties for the multi-

layer networks. The approximation ability of convolutional networks has been numerically

demonstrated by a series of numerical experiments including randomly corrupting the pix-

els and labels [40]. In [26,30,31], it is shown that the restricted Boltzmann machine and

deep belief networks can approximate any distribution on the set {0,1}n of binary vectors

of length n. Meanwhile, the width bounded fully connected networks can approximate

any continuous function as the depth goes to infinity [21] and the ResNet with one-neuron

hidden unit per layer can approximate any Lebesgue-integrable functions [20]. However,

the above results do not apply for CNNs. In [7, 8], convolutional arithmetic circuits and

convolutional rectified networks are constructed and analyzed via tensor decomposition.
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Despite the UAP and depth efficiency of these networks, it only contains the 1×1 convolu-

tion in each hidden layer which is not consistent with the practical CNNs. [41] constructs

a CNN with zero boundary condition and establishes its UAP and convergence rate for the

functions in Sobolev space. Compared to the existing CNNs, every hidden layer in [41]

contains only one convolution and there is no fully connected layer. Moreover, due to the

zero boundary condition, the dimension in feature space is larger than the dimension of in-

put signal especially when the depth of the network is deep. Instead of constructing a new

architecture, a main goal of this paper is to understand why the current state-of-the-art

CNNs can achieve high classification accuracy. As the last layer always contains a fully

connected two-layer network which has the UAP, our efforts have been made to construct

a CNN with filter size equal to 3 such that the features satisfy the separable condition (1.1).

More specifically, checking this condition can be difficult when the feature dimension is less

than the input dimension.

Another line of research for understanding deep neural networks is investigating the

advantage of non-linearity and multi-layer structures, which are two key ingredients con-

tributing to the success of deep learning. An early attempt is initiated by [22] in which

a wavelet transformation based scattering network is constructed, and its translation and

deformation invariance are proved. The above properties are generalized to general con-

volutional filters, Lipschitz non-linear activations and pooling functions in [39]. In [32],

a sparsely-connected depth-4 neural network is constructed to approximate functions de-

fined on a low dimensional manifold. Convolutional sparse coding based neural networks,

which can been seen as a generalization of data driven tight frame first introduced in [3],

has been recently proposed with stable recovery properties under certain sparsity assump-

tions [28]. The distance-preservation property has been shown in [12] for neural networks

with Gaussian random weights. Although these works provide insights into certain compo-

sitional architectures, they do not directly lead to understanding good classification perfor-

mance of CNNs. The same is true for a series of works investigating the role of composition

in function approximation [24, 25, 27, 29, 37], in that there lacks concrete results on the

advantage of composition for the CNN architectures that are employed in practice. The

goal of the present work is to address this issue, and develop approximation results that

applies to modern convolution neural network structures.

The rest of this paper is organized as follows. The approximation properties and scaling

analysis of convolutional neural networks are shown in Section 2 and Section 3, respec-

tively. Finally, Section 4 concludes and the detailed proofs are shown in Appendix A.

2. Approximation Analysis of Convolutional Neural Networks

In this section, we present our approximation result for CNNs following a statistical

learning framework [9, 38]. This consists of estimating the so-called bias and variance,

which will be made clear subsequently. The bias measures the approximation error, which

is the distance between the oracle classifier and the best approximation in the function space

generated by convolutional networks. The variance measures the sample error which is the

distance between and the classifier obtained by minimizing some empirical loss of examples
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sampled from an unknown distribution. The key is to prove that there exist convolutional

networks which are separable, stable feature extractors, in the sense of (1.1). The sample

error analysis then follows from the classical PAC-learning framework. Before proceeding

to the analysis, we first introduce some assumptions and notations.

2.1. Notations and definitions

To avoid the cumbersomeness of notations, we only consider one dimensional signals

(vectors) in this paper. Remarks will be provided when the result is dependent on the

dimensional of the input signals. Vectors, matrices and sets are denoted by lower, upper

and calligraphic letters, respectively. Given a vector y ∈ Rn, y j denotes the j-th entry;

given a matrix Y ∈ Rm×n, Yj denotes the j-th column of Y and Yi j denotes the i-th element

in Yj . The multi-valued functions are denoted by the bold upper letters.

Definition 2.1. Consider the following different type of convolution:

1. For u ∈ Rn, v ∈ Rr , the cyclic convolution ∗ : Rn ×Rr 7→ Rn is

(u ∗ v)i =

r∑

k=1

ui⊖kvk, (2.1)

where

i ⊖ j = i − j mod n.

2. For U ∈ Rn×s, V ∈ Rr×s, the multi-channel convolution ⊛ : Rn×s ×Rr×s 7→ Rn is

U ⊛ V =

s∑

i=1

Ui ∗ Vi . (2.2)

3. A one-layer convolution with m kernels {U i}m
i=1
⊂ Rr×s is a nonlinear map

F = (F1, F2, . . . , F m),

where

F i(X ) = X ⊛ U i + Bi, i = 1,2, . . . , m, (2.3)

where Bi is the so-called bias. Besides, given an activation function σ, we also define

Fσ = (F
1
σ, F2

σ, . . . , F m
σ ) where F i

σ(x) = σ(X ⊛ U i + Bi), i = 1,2, . . . , m.

2.2. Problem formulation

We now introduce the basic formulation of the classification problem using CNNs. Al-

though the following analysis can be extended to the multi-classification tasks, we consider

the binary case for the simplicity. Let Ω0 and Ω1 to be the sets containing the signals from

two classes. Throughout this paper, we make the following assumption on Ω0 and Ω1.
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Assumption 2.1. Let Ω= Ω0∪Ω1 where Ω0 and Ω1 are compact subsets in Rn. Moreover,

there is a positive a gap between Ω0 and Ω1. That is, there exists some d0 > 0 such that

d(Ω0,Ω1) = inf
�
‖x0 − x1‖|x0 ∈ Ω0, x1 ∈ Ω1

	
= d0 > 0. (2.4)

We define an oracle classifier f ∗ : Ω 7→ [0,1] such that

f ∗(x) =

¨
0, if x ∈ Ω0,

1, if x ∈ Ω1.
(2.5)

Observe that f ∗ is continuous due to the compactness of Ω0 and Ω1. Given m training

samples {x i, f ∗(x i)}mi=1
, the classification task aims to find an approximation scheme to

obtain a classifier that is close to the oracle classifier. Due to the complicated geometry

and the limited information of the domain Ω, it is difficult to find a good approximated

classifier using the traditional interpolation schemes. On the contrary, CNNs construct the

approximation via the composition of feature map T and classifier g. The feature map T

aims to simplify the domain Ω so as to identify Ω0 and Ω1 more easily in the feature space.

For instance, T (Ω0) and T (Ω1) may become easily separated. In fact, the feature map T in

CNNs is constructed in the form of multi-layer convolutions

T = FL,σ ◦ · · · ◦ F1,σ, (2.6)

where L is the number of layers and Fi is a one-layer convolution with si kernels i = 1, . . . , L.

The classifier g in CNNs is a fully connected two-layer network with K hidden units

g(x) =

K∑

i=1

ciσ
�
w⊤

i
x + bi

�
, (2.7)

where ci , bi ∈ R, wi ∈ Rn and σ is a nonlinear function. The parameters ΘT and ΘG of the

feature map T and classifier g are

Θ
L
T = ∪L

i=1Θ
i
T = ∪L

i=1 ∪
si

j=1
{U i j, Bi j},

Θ
K
G = ∪K

i=1Θ
i
G = ∪K

i=1 ∪i
j=1 {ci , bi, wi}.

(2.8)

Throughout this paper, we assume the size of filters is 3 which is most used in practice. In

summary, the spaceH L,K of the L-layer CNNs is

T L =
�

T = FL,σ ◦ · · · ◦ F1,σ(x ;θT ) | θT ∈ ΘL
T

	
,

G K =

¨
g(x ;θg) =

K∑

i=1

ciσ
�
w⊤i x + bi

� �� θg ∈ ΘK
G

«
,

H L,K =
�
h = g ◦ T (x ;θT ,θG) | T ∈ T L, g ∈ G K

	
.

(2.9)

Given m training samples {x i, f ∗(x i)}mi=1
, the approximating classifier is obtained via solv-

ing the empirical minimization

min
θT∈ΘL

T
,θg∈ΘK

G

1

m

m∑

i=1

�
g ◦ T (x i;θT ,θg)− f ∗(x i)

�2
. (2.10)
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Define Θ∗ = (Θ∗T ,Θ∗G) be the set of minimizers and assume Θ∗ 6= ;. Let g∗ = g(x ;Θ∗G) and

T ∗ = T (x ;Θ∗T ) where (Θ∗T ,Θ∗G) ∈ Θ∗, the classification accuracy of g∗ ◦ T ∗ is

‖g∗ ◦ T ∗ − f ∗‖ =
�∫

Ω

�
f ∗(x)− g∗(T ∗(x))

�2
dµ

�1/2
, (2.11)

where µ is a probability measure on Ω.

2.3. Overview of the analysis

Direct estimation of (2.11) is difficult due to the additional complication of sampling

errors, and thus most existing approaches estimate (2.11) by separating the it from the

approximation error via the triangle inequality,

‖g∗ ◦ T ∗ − f ∗‖ ≤ ‖g ◦ T − f ∗‖+ ‖g ◦ T − g∗ ◦ T ∗‖, ∀h= g ◦ T ∈H L,K . (2.12)

The first term in the right-hand part of (2.12) is the bias which characterizes the approxi-

mation power of the space H L,K; the second term is the variance which characterizes the

errors due to the sampling process and minimization models. In the following context, we

analyze the bias and variance separately.

Bias estimation. The bias estimation ‖g ◦ T − f ∗‖ is to show the approximation capability

of the CNNs, i.e. T has deep convolutional architecture, with interlacing convolutional and

point-wise non-linear layers. Our goal is to make rigorous statement that convolutional

network classifier can approximate the oracle classifier f ∗ up to any precision.

In the process, we will require a classical result on the approximation properties of full

connected networks [10,15], which is stated below.

Theorem 2.1. Let σ be a non-constant, bounded and monotonically-increasing continuous

function. Then, G = ∪∞K=1G K is dense in C(X ) for any compact subset X with respect to the

L∞-norm where G K is defined in (2.9) for each K ∈ N.

Although Theorem 2.1 provides theoretical guarantee of the approximation properties

of fully connected networks, a similar result for the CNNs cannot be derived as a conse-

quence, due to the presence of feature map T , especially when the range of T (feature

space) is low dimensional. In particular, it is clear that g ◦ T cannot distinguish two points

from different classes when T maps them the same feature.

We now introduce a condition below which eliminates this issue, and from it, the ap-

proximation properties of CNNs can be readily established.

Condition 2.1. The feature map T : Rn 7→ Rp satisfies the properties as follows:

1. T is stable if there exists L > 0 such that

‖T (x)− T (y)‖ ≤ L‖x − y‖, ∀x , y ∈ Ω. (2.13)
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2. T is separable if there exists ℓ > 0 such that

‖T (x0)− T (x1)‖ ≥ ℓ, ∀x0 ∈ Ω0, x1 ∈ Ω1. (2.14)

The first property mainly ensures that in-class variations are small and the second prop-

erty ensures that the classifier has enough discriminative power to separate the two classes.

We stress that this condition, if true, will lead to the desired approximation results for CNNs.

However, it is not obvious that this condition (especially (2.14)) holds, since T often maps

Ω to a lower dimensional space and thus possesses a large kernel.

In the following, we first present the approximation results which follow from Condi-

tion 2.1, and then show that we can in fact construct CNNs with the usual architecture that

satisfies this condition.

Theorem 2.2. Let f ∗ be the oracle classifier in (2.5). Suppose the Assumption 2.1 holds

and there exists T ∈ T L that satisfies Condition 2.1 where T L is the L-layer convolutional

networks defined in (2.9). Then, for any ε > 0, there exist K ∈ N and g ∈ G K such that

‖ f ∗ − g ◦ T‖∞ ≤ ε, (2.15)

where G K is fully connected two-layer networks defined in (2.9).

Proof. Let Ω̂i = T (Ωi) for i = 0,1. By the separable property of T given in Condition 2.1,

we know Ω̂0 and Ω̂1 are disjoint compact subsets. Define f̂ : Rp 7→ [0,1] such that f̂ (x) = i

for x ∈ Ω̂i, for i = 0,1. Then, f̂ is continuous and f̂ ◦ T = f ∗ for all x ∈ Ω. Moreover, by

the Theorem 2.1, for any ε > 0, there exist K ∈ N and g ∈ G K where G K is defined in (2.9)

such that

‖g − f̂ ‖∞ ≤ ε. (2.16)

Thus, we have ‖g ◦ T − f ∗‖∞ = ‖g ◦ T − f̂ ◦ T‖∞ ≤ ε.

Variance estimation. The variance term ‖g∗ ◦ T ∗ − g ◦ T‖ characterizes the uncertainty

between the numerical and the theoretical classifier. A common assumption is imposed for

the training samples.

Assumption 2.2. The m samples {x i}mi=1
are identically and independently drawn accord-

ing to a probability measure µ on Ω.

Given a classifier f : Ω→ {0,1}, define the error and empirical error function as

E( f ) =

∫

Ω

�
f (x)− f ∗(x)
�2

dµ(x), Ez( f ) =
1

m

m∑

i=1

�
f (x i)− f ∗(x i)
�2

. (2.17)

The sample error is to estimate the error from the observation of the empirical error which

is based on the concentration inequality [4,9].
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Lemma 2.1 (Bernstein Inequality). Suppose a random variable ξ on X satisfies Eξ = ν≥ 0,

and |ξ − ν| ≤ B almost everywhere. Assume that Eξ2 ≤ ηEξ. Then for any δ > 0 and

0< γ≤ 1, we have

P

¨
ν−
�∑m

i=1
ξ(zi)
�
/m

p
ν+δ

> γ
p
δ

«
≤ exp

�
− γ2mδ

2η+ 2B/3

�
. (2.18)

For any space H and δ > 0, define NH (δ) to be the covering number of H , i.e. the

minimal number of the balls with radius δ that coversH . By the Lemma 2.1, we estimate

the relationship between the error E( f ) and the empirical error Ez( f ) in the next theorem.

Theorem 2.3. Suppose Assumption 2.2 holds. If | f | ≤ M for all f ∈ H L,K, then for any

δ > 0 and 0< γ < 1, we have

P

�
sup f ∈H L,K

E( f )−Ez( f )p
E( f ) +δ

> 4γ
p
δ

�
≤NH L,K

�
γδ

2M

�
exp

�
−3γ2mδ

8

�
. (2.19)

The proof is deferred to the Appendix A. From (2.19), it is clear that the probability

goes to 0 as m → +∞ if the covering number is finite. In general, the covering number

increase exponentially as the dimension of signal increases which is the curse of dimension.

Many efforts have been made to calculate it more precisely with careful analysis [4]. The

estimation of covering number for CNNs with specific architecture is an interesting problem

in our future research.

Classification accuracy. Once both bias and sample error is estimated, the classifica-

tion accuracy of the numerical classifier could be obtained. Given m training samples

{(x i, f ∗(x i))}, recall the numerical classifier h∗ = g∗ ◦ T ∗ is the minimizer of the empir-

ical error, i.e.

(g∗, T ∗) ∈ arg min
g∈G K ,T∈T L

Ez(g ◦ T ). (2.20)

Define the classification accuracy of h∗ is

A (h∗) = 1−µ
�
{x ∈ Ω | g∗ ◦ T ∗(x) 6= f ∗(x)}

�
, (2.21)

where the second term in (2.21) measures the incorrectness of the learned classifier h∗. In

summary, we can characterize A (h∗) in the next theorem.

Theorem 2.4. Suppose Assumptions 2.1 and 2.2 hold. Assume the space T L generated by the

CNNs satisfies Condition 2.1. Then, for any ε > 0, there exist K ∈ N and M > 0 such that

P{A (g∗ ◦ T ∗)≥ 1− ε} ≥ 1−NH L,K (ε/32M)exp{−3mε/256}, (2.22)

where m is the number of samples.

Proof. The boundedness of f ∈ H L,K can be achieved by imposing the bounded con-

straints on the parameter space. Without loss of generality, we assume

H L,K = {g ◦ T | ‖θ‖∞ ≤ M̃}



Approximation of CNNs 533

such that | f | ≤ M for all f ∈H L,K . By the Theorem 2.2, there exist a convolutional neural

network T ∈ T L and g ∈ G K such that

‖g ◦ T − f ∗‖∞ ≤
p
ε

2
. (2.23)

Using the sample error bound (2.19) in Theorem 2.3, the inequality

E(h∗)≤ 4γ
p
δ
Æ
E(h∗) +δ+Ez(h

∗) (2.24)

holds with probability at least 1 − NH L,K (γδ/2)exp{−3γ2mδ/8}. The inequality (2.24)

implies

E(h∗)≤ 4γ

√√
δ
�
E(h∗) +δ
�
+
E2(h∗)

4
+Ez(h

∗) = 4γ

�
E(h∗)

2
+δ

�
+Ez(h

∗). (2.25)

By (2.20), h∗ = g∗ ◦ T ∗ is the minimizer of Ez(g) inH L,K, we have

Ez(h
∗) ≤ Ez(g ◦ T ) ≤ ǫ

4

from (2.23). Thus, we know

E(g∗ ◦ T ∗) ≤ (1− 2γ)−1
�

4γδ+
ǫ

4

�
(2.26)

holds with probability at least 1 −NH L,K (γδ/2M)exp{−3γ2mδ/8}. Choose γ = 1/4 and

δ = ε/4, the inequality (2.22) holds.

Theorem 2.4 established that the CNNs can achieve the desired classification with high

probability whenever the number of samples is large enough and the Condition 2.1 holds.

However, verifying the stable and separable properties of the feature map T generated by

the CNNs is difficult in general. Since the feature map T is continuous, the stable condition

(2.13) is easily verified as Ω is compact. The most technical part is to find a feature map

T generated by some CNN architecture such that the separable condition (2.14) holds. In

the next section, we will focus on this part.

2.4. The separable property of CNNs

Recall that the feature map T : Rn 7→ Rp is

T = FL,σ ◦ · · · ◦ F1,σ, (2.27)

where Fi,σ is given in Definition 2.1 for all i = 1,2, . . . , L. Throughout this section, we

assume the activation function σ is a ReLU function, i.e. σ(x) =max(x , 0). By considering

the dimension of features, we will discuss the separable property in two cases.
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2.4.1. Case I: p ≥ n

In the next lemma, we show that a one-layer convolution network can represent a wavelet

tight frame transformation.

Lemma 2.2. For any positive integer J > 1, there exist J kernels {ui}J
i=1
⊂ RJ such that

the one-layer convolutional network F : Rn×1 7→ Rn×J , F = (F1, F2, . . . , F J ) with kernel

(u1,u2, . . . ,uJ ) induces a tight frame.

Proof. Constructing one example suffices to prove existence. Let U ∈ RJ×J be an or-

thogonal matrix with U⊤U = (1/J)I . Let ui be the i-th row of U . Define F : Rn 7→ RnJ

as

F(x) = (u1 ∗ x ; u2 ∗ x , . . . ,uJ ∗ x). (2.28)

Then, the columns of F⊤ forms a tight frame, i.e. F⊤F= I (see [3,36] for more details).

The transformation F is isometric, hence separable. In practical convolutional networks,

point-wise nonlinearity is shown to be essential. The next theorem shows that convolutional

neural networks can represent separable maps when the network employs a nonlinear ac-

tivation function σ.

Theorem 2.5. For any positive integer J > 1, there exists a one-layer convolutional network

Fσ : Rn×1 7→ Rn×2J which is a separable and stable feature extractor.

Proof. Let F be defined in Lemma 2.2, then we have

‖F(x)− F(y)‖2 = ‖x − y‖2 for x ∈ Ω0, y ∈ Ω1. (2.29)

Define Fσ : Rn×1 7→ RnJ×2,Fσ(x) = [σ(F(x)),σ(−F(x))], then

‖Fσ(x)− Fσ(y)‖2 = ‖σ(F(x))−σ(F(y))‖2 + ‖σ(−F(x))−σ(−F(y))‖2

≥ 1

2
‖F(x)− F(y)‖2 = 1

2
‖x − y‖2 ≥ 1

2
d ,

where the first inequality is from the fact

|σ(a)−σ(b)|2 + |σ(−a)−σ(−b)|2 ≥ 1

2
(a − b)2 for a, b ∈ R. (2.30)

Thus, Fσ is separable.

The above one-layer feature map T = Fσ : Rn×1 7→ Rp, p = 2nJ , is sufficient for proving

existence of T via increasing the dimensions. However, we use stable feature extractors

that has fewer output dimensions than the input in many applications. For example, in

AlexNet [17], the convolutional network component has an output dimension of 4096,

which is much smaller than the input image dimension 224× 224.
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2.4.2. Case II: p < n

When the dimension of the input signal is so large that it exceeds the available computing

resources, dimension reduction is often used, where T extracts a number of features smaller

than the dimension of the input space. Such processes often lose information. However,

in the case when the input data have some sparsity structures, dimensional reduction can

be achieved without sacrificing separability. In particular, sparsity allows a random projec-

tion to be nearly isometric with high probability on a lower dimensional space [5], thereby

enforcing the separability condition. We will show subsequently that this random projec-

tion can be decomposed into small convolutions, consistent with the usual architectures in

CNNs.

Since the decomposition results in low dimensional feature, we define valid and full

convolutions which naturally result in varying dimensions

(Valid) ∗V : Rn ×Rr 7→ Rn−r+1 : (u ∗V v)i = (u ∗ v)r−i+1,

(Full) ∗F : Rn ×Rr 7→ Rn+r−1 : u ∗F v = I(u) ∗V v,
(2.31)

where I(u) = [0,u,0]⊤ ∈ Rn+2r−2 and 0 is a zero vector in Rr−1. A straightforward rela-

tionship between valid and full convolution is

x ∗V (w1 ∗F w2) = (x ∗V w1) ∗V w2(−·), (2.32)

where w(−·) is the flip of w2. In the following context, we begin with a concrete notation

of sparsity on which the subsequent results are based.

Definition 2.2. x is said to be s-sparse if the number of non-zero elements of x is less than or

equal to s. Denote Σs be the set of all s-sparse vectors.

From the classical literature [6] in compressed sensing, we have the following result

regarding to s-sparse vectors.

Theorem 2.6. For any δs ∈ (0,1), there exists a linear map A : Rn 7→ Rp that satisfies the

(s,δs)-restricted isometry property (RIP)

(1−δs)‖x‖2 ≤ ‖Ax‖2 ≤ (1+δs)‖x‖2, ∀x ∈ Σs, (2.33)

if p ≥ 2Cδ−2
s

s ln(en/s) for some constant C > 0 which is independent of δs and s.

Remark 2.1. Among many, one way to pick A to satisfy the above is Gaussian random

matrices with i.i.d. entries N (0,1/p). Then, by [11, Theorem 9.27], there exists C ≈
80.098 such that A satisfies (s,δs)-RIP with probability at least 1 − 2(en/s)−s when p ≥
2Cδ−2

s
s ln(en/s).

The linear map A constructed above is injective when restricted to the set of s-sparse

vectors. Therefore, if the signal itself is sparse, all that remains is to show that A can be

decomposed into a sequence of small convolution (this is done in Theorem 2.8), leading to

our desired result.
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However, in most applications the signals are not sparse in the temporal and spatial do-

main. Nevertheless, they often admit a sparse approximation under some transformation,

e.g., natural images often admit sparse approximations in wavelet tight frames, and audio

signals often have sparse approximations using the orthonormal Fourier transform. We now

make this notion of approximate sparsity precise, which allows for greater applicability of

our results.

Definition 2.3 (Approximate Sparsity). Given s ∈ N, Ω is s-approximately-sparse with error

β ≥ 0 under a linear transformation W if

‖Hs(W x)−W x‖ ≤ β , ∀x ∈ Ω, (2.34)

where Hs(x) = arg min{‖x − y‖ : ‖y‖0 ≤ s}.

Note that Ω= Σs if β = 0. Since W is to be composed with A, the separability condition

is preserved if W satisfies W⊤W = I . Moreover, we would like to show that W can be

represented by convolution filters. The following outlines a possible construction: Let k ∈ N
and n/k = l. Define the downsample operator Pk : Rn 7→ Rℓ to be Pk(x)[ j] = x[k j] for

j = 1, . . . , l. Given a kernel w, define ∗k be the convolution of stride k, it is easy to know

w ∗k x = Pk(x ∗ w). (2.35)

Given J kernels (w1, . . . , wJ ), denote the operator W : Rn 7→ Rm with m = lJ to be

W (x) =
�
x ∗k w1, x ∗k w2, . . . , x ∗k wJ

�
. (2.36)

The requirement W⊤W = I can be satisfied using the unitary extension principle. Applying

Theorem 2.6 for W (x), it has that for any δ2s ∈ (0,1), there exists A∈ Rp̃×m such that

(1−δ2s)‖W x‖2 ≤ ‖AW x‖2 ≤ (1+δ2s)‖W x‖2, ∀W x ∈ Σ2s, (2.37)

when p̃ = 4Cδ−2
2s

s ln(em/s) for some constant C . Therefore, when the feature dimension is

less than the dimension of input signal, we require in our construction

n> 2p̃ = 8Cδ−2
2s s ln(em/s). (2.38)

These lead to the following result.

Theorem 2.7. Suppose Ω is s-approximately-sparse with error β and the tuple (β ,δ2s , s, d0)

satisfies (2.38) and
p
(1+δ2s)/(1−δ2s) < (d0 − 2β)/2β for some δ2s ∈ (0,1). Then, there

exists a 2-layer convolutional network T : Rn×1 7→ R1×2p which is separable with 2p < n.

Proof. Let (w1, w2, . . . , wJ ) be J kernels and W : Rn 7→ Rm be the associated operator

defined as (2.36) which satisfies W⊤W = I . By Theorem 2.6, there exists A : Rp×m with

p = 4Cδ−2
2s s ln(em/s) such that the inequality (2.37) holds. Thus, for all x ∈ Ω0 and y ∈ Ω1,

we have

‖Hs(W x)−Hs(W y)‖ ≥ ‖W x −W y‖− ‖W x −Hs(W x)‖− ‖W y −Hs(W y)‖
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= ‖x − y‖ − ‖W x −Hs(W x)‖− ‖W y −Hs(W y)‖
≥ d0 − 2β , (2.39)

which implies

‖A(W x)− A(W y)‖
= ‖A(Hs(W x))− A(Hs(W y)) + A(Hsc(W x))− A(Hsc(W y))‖
≥
Æ

1−δ2s‖Hs(W x)−Hs(W y)‖ −
Æ

1+δ2s(‖Hsc (W x)‖+ ‖Hsc (W y))‖)
≥ (d0 − 2β)
Æ

1−δ2s − 2β
Æ

1+δ2s > 0, (2.40)

where Hsc(x) = x − Hs(x). Let ai be the i-th row of A, and let H : Rm×2 7→ R, where

ãi = [ai ,−ai]. Then

H i(x) = ai ∗V σ(W x)− ai ∗V σ(−W x) = 〈ai ,σ(W x)−σ(−W x)〉= 〈ai ,W x〉, (2.41)

since σ(x)−σ(−x) = x . Set the feature map T : Rn×1 7→ R1×2p as

T (x) =

�
σ ◦ H ◦σ ◦
�

W

−W

�
(x),σ ◦ −H ◦σ ◦

�
W

−W

�
(x)

�
. (2.42)

Thus, T (x) = [σ(AW x),σ(−AW x)]. For all x ∈ Ω0 and y ∈ Ω1, we have

‖T (x)− T (y)‖22 = ‖σ(AW x)−σ(AW y))‖22 + ‖σ(−AW x))−σ(−AW y))‖22
≥ 1

2
‖AW x − AW y‖22 > 0, (2.43)

where the first inequality is from (2.30). Thus, T is separable and

2p = 8Cδ−2
2s s ln(em/s) < n.

Remark 2.2. Recall that β measures the error incurred by thresholding signals in Ω into

s-sparse vectors under the transformation W . Thus the condition in Theorem 2.7 involving

β and δ2s represents a trade-off between the approximate sparsity condition and dimension

reduction capability. If Ω has better s-sparse approximation, δ2s can be closer to 1 which

reduces the required number of measurements, i.e. p can be smaller. Thus, the separable

condition becomes easier to satisfy when the gap d0 between Ω0 and Ω1 increases.

In the above theorem, the support size of the kernel is the same as the input signal.

This essentially reduces the convolutional network to a fully connected network, and is

seldom used in real world applications. However, we show in the following lemma that

can be represented as composition of multiple one-layer convolutional neural networks

and the support of kernels is up to 3 which is common in many practical architectures such

as VGG-16 [34], ResNet [14], DenseNet [16], etc. The next lemma shows that each row

(equivalently, channel) of A can be decomposed into convolutions with small filters.
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Lemma 2.3. Let a ∈ Rn, there exist q1 filters {αi}q1

i=1
with size 3 and q2 filters {βi}q2

i=1
with

size 2 such that

a = α1 ∗F . . .αq1
∗F β1 ∗F . . . ∗F βq2

,

where ∗F denotes the convolution with zero extension and ∗F : Rn ×Rr 7→ Rn−r+1.

Proof. Let Fx be the Fourier series of the sequence x , i.e.

(Fx)(ξ) =

n−1∑

j=0

xn exp(−i jξ). (2.44)

Let z = exp(−iξ), then P(z) := (Fa)(z) is a polynomial of z of degree n. By the unique

factorization theorem, P(z) can be factorized as

P(z) =

q1∏

p1=1

�
cp1

z2 + bp1
z + ap1

� q2∏

p2=1

�
b
′
p2

z + a
′
p2

�

=

q1∏

p1=1

(Fαp1
)(z)

q2∏

p2=1

(Fβp2
)(z)

= F
�
α1 ∗F . . .αq1

∗F β1 ∗F . . . ∗F βq2

�
,

where αp1
= [ap1

, bp1
, cp1
] ∈ R3 and βp2

= [a
′
p2

, b
′
p2
] ∈ R2. Taking the inverse Fourier

transform, we get the desired result.

Theorem 2.8. Suppose the condition in Theorem 2.7 holds. There exists a sequence of 1 layer

convolutional layers {G1
σ,G2

σ, . . . ,Gk+1
σ }, such that the feature map T = Gk+1

σ ◦Gk
σ ◦ · · · ◦G1

σ :

R
n×1 7→ R1×2p is separable.

Proof. Let W be the transformation in Theorem 2.7 which can be seen as the convolution

layer, H ∈ Rp×m be the valid convolution with kernels from the row of A which are given in

Theorem 2.7. Therefore, it suffices to prove that there exists convolutions map T such that

T (x) =
�
σ
�
H(σ(W (x)),σ(−W (x)))

�
,σ
�
−H(σ(W (x)),σ(−W (x)))

��
. (2.45)

Let G1
σ = [σ(W x),σ(−W x)] ∈ Rm×2.

By Lemma 2.3, each row of A can be decomposed into compositions of up to k short

filters with size 3, inserting delta filters when necessary,

ai = g i
1
∗F g i

2
· · · ∗F g i

k
, ∀i = 1, . . . , p. (2.46)

Without loss of generality, assume that m = 2k + 1. Otherwise, we can add some zeros

entries to the input signal x .
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Define U i
1
= g i

1
and eU i

1
= [g i

1
,−g i

1
] ∈ R3×2 for each j = 1, . . . , p. Let G2

σ be the one-

layer convolution with kernels {eU i
1}

p

i=1
∪ {−eU i

1}
p

i=1
. Then, G2

σ = (G
2,1
σ , . . . , G

2,2p
σ ) is a map

from Rm×2 to R(m−2)×2p and

G2,i
σ ◦G1

σ = σ
��
σ(W x)−σ(−W x)

�
∗V g i

1

�

= σ
�
W x ∗V g i

1

�
, i = 1, . . . , p,

G2,i
σ ◦G1

σ = σ
�
−
�
σ(W x)−σ(−W x)

�
∗V g

i−p

1

�

= σ
�
W x ∗V −g

i−p

1

�
, i = p+ 1, . . . , 2p.

(2.47)

Define U i
j
∈ R3×p to be the zero matrix except the i-th column equals to the g i

j
(−·) for all i =

1, . . . , p and j = 2, . . . , k, eU i
j
= [U i

j
,−U i

j
] ∈ R3×2p and G

j+1
σ be a one-layer convolution with

kernels {eU i
j
}p

i=1
∪ {−eU i

j
}p

i=1
. Thus, G

j+1
σ = (G

j+1,1
σ , . . . , G

j+1,2p
σ ) is a map from R(m−2 j)×2p to

R
(m−2( j+1))×2p and

G j+1,i
σ ◦G j

σ ◦ · · · ◦G1
σ = σ
�
W x ∗V g i

1 ∗V · · · ∗V g i
j(−·)
�

, i = 1, . . . , p,

G j+1,i
σ ◦G j

σ ◦ · · · ◦G1
σ = σ
�
−W x ∗ g

i−p

1
∗V · · · ∗V g i

j(−·)
�

, i = p+ 1, . . . , 2p.
(2.48)

Define

T = Gk+1
σ ◦Gk

σ ◦ · · · ◦G1
σ : Rn 7→ R1×2p. (2.49)

Then, we know feature map T has the form (2.45).

We have established the existence of composed convolutional networks with fixed sup-

port kernel size that is a separable stable feature extractor. In addition, when the nonlinear

activation is ReLU, one can see from the above arguments that there exists composed con-

volutional network Hσ = Gk
σ ◦Gk−1

σ ◦ · · · ◦G1
σ such that

Hσ(x) =
�
σ(Ax + b),σ(−Ax − b)

�
(2.50)

for some A ∈ Rm×n and b ∈ Rm. The above result implies that from the perspective of

approximation capability, composed convolutional network is at least as strong as fully

connected network because we can actually implement a fully connected network with one

hidden layer by a convolutional neural network.

Remark 2.3. The key ingredients of the proof lie in the sparse representations of the input

signals and the representation of the inner product of two vectors based on the convolu-

tional factorization with small kernel size (Lemma 2.3). It is worth mentioning that this is

an initial step for understanding the UAP of convolutional neural networks and deserves

deeper exploration. Problems include finding sparse representations of underlying signals

using nonlinear transformations and the existence of convolutional representations of the

inner product of matrices or tensors under the kernel size constraint.

2.5. The advantage of nonlinearity

The previous section basically constructs a convolutional network with a fixed filter size
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to represent a linear operator that has the separable property in feature space. However,

this representation does not show the advantage of nonlinear activations in neural net-

works. We now investigate the effects of the non-linear activation functions in deep neural

networks in the following simple context.

Define an L-layer deep neural network to be

f (x) = g ◦σ
�
WL(. . .σ(W1 x + b1) . . . ) + bL

�
. (2.51)

We will prove that a nonlinear transformation of the inputs may further decrease the ap-

proximation error, whereas a linear transformation will not. The result depends on the

following assumptions.

Assumption 2.3. The minimum of the problem

min
f

E( f ) =

∫

Ω

�
f ∗(x)− f (x)
�2

dµ (2.52)

is bigger than 0 and the minimizer is attainable.

Assumption 2.4. The activation function (applied point-wise) σ satisfies

1. σ ∈ C∞(R),

2. σ is non-degenerate, i.e. for each k ≥ 0 there is a bk ∈ R such that (dkσ/d x k)(bk) 6= 0.

Rewrite f (x) as f (x) = g̃(W1 x+ b1) for some function g̃ and g̃ ∈ eG . Let f̃ = g̃∗(W ∗
1

x+

b∗1) be the minimizer of (2.52) and E( f̃ ) > 0. Define the linear transformation P(x) =

x + V (U x + b) for V ∈ Rn×q, U ∈ Rq×p, b ∈ Rq. In the next theorem, we first show that the

linear transformation does not decrease the approximation error.

Theorem 2.9. The following identity holds:

E( f̃ ) = min
f ,U ,V,b

∫

Ω

�
f ∗(x)− f ◦ P(x ; V, U , b)

�2
dµ. (2.53)

Proof. Since f (x) = f ◦ P(x ; 0, U , b) for all x ∈ Ω, we have

E( f̃ ) ≥ min
f ,U ,V,b

∫

Ω

�
f ∗(x)− f ◦ P(x ; V, U , b)

�2
dµ. (2.54)

Moreover, and we have

f ◦ P(x ; V, U , b) = g̃
�
W1(x + V (U x + b)) + b1

�
= g̃
�
W
′
1
x + b

′
1

�
, (2.55)

where W
′
1 =W1 + V U and b

′
1 = b1 +W1V b. Then, we can conclude (2.53) holds.

Define the nonlinear transformation Pσ(x ; V, U , b) = x + Vσ(U x + b) and set

X =
�

x ∈ Ω | f̃ (x) 6= f ∗(x)
	
, Xi =
�

x ∈ Ω | ∇i f̃ (x) 6= 0
	
, i = 1,2, . . . , n. (2.56)

We will show that f ◦ Pσ can decrease the approximation error in the next theorem.
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Theorem 2.10. Suppose Assumptions 2.3 and 2.4 hold and µ(X ∩ (∪n
i=1
Xi)) > 0. Then,

there exist Ṽ , Ũ and b̃ such that E( f̃ )> E( f̃ ◦ Pσ(x ; Ṽ , Ũ , b̃)).

Proof. We first show that there exist Ũ and b̃ such that

∇V E
�

f̃ ◦ Pσ(x ; 0, Ũ, b̃)
�
6= 0. (2.57)

We prove (2.57) by contradiction. By the dominated convergence theorem, we have

∇V E
�

f̃ ◦ Pσ(x ; 0, U , b)
�

= −2

∫

Ω

�
f̃ (x)− f ∗(x)
�
∇ f̃ (x)
�
σ(U x + b)
�⊤

dµ= 0, ∀U , b. (2.58)

Since µ(X ∩ (∪n
i=1
Xi)) > 0, there exists some i0 such that µ(X ∩Xi0

) > 0. From (2.58),

we have
∫

Ω

�
f̃ (x)− f ∗(x)
�
∇i0

f̃ (x)
�
σ(u⊤x + b)
�

dµ= 0, ∀u ∈ Rn, b ∈ R. (2.59)

For each k ≥ 0 and multi-index i = (i1, . . . , in) with i j ≥ 0 and
∑

j i j = k,

0=
∂ k

Π j∂ u
i j

j

∫

Ω

�
f̃ (x)− f ∗(x)
�
∇i0

f̃ (x)σ
�
u⊤x + b
�
dµ|u=0,b=bk

. (2.60)

By Assumption 2.4, for each k we may pick bk ∈ R such that dkσ(bk)/d x k 6= 0. The above

equality then implies

0=

∫

Ω

�
f̃ (x)− f ∗(x)
�
∇i0

f̃ (x)Π j(x j)
i j dµ. (2.61)

In particular, ( f̃ − f ∗)∇i0
f̃ is orthogonal to every monomial, and hence must equal 0 a.e.

on Ω, which contradicts the assumption that µ(X ∩Xi0
) > 0. This proves (2.57).

Now we define V̂ (α) = −α∇V E( f̃ ◦ Pσ(x ; 0, Ũ, b̃)) for α ∈ (0,1). By the Taylor’s theo-

rem, we have

E
�

f̃ ◦ Pσ(x ; V̂ (α), Ũ , b̃)
�
≤ E
�

f̃ ◦ Pσ(x ; 0, Ũ , b̃)
�
−αC2

+
1

2
α2C2 max

‖V‖≤C

∇2
V E
�

f̃ ◦ Pσ(x ; V, Ũ , b̃)
�

2
, (2.62)

where C := ‖∇V E( f̃ ◦ Pσ(x ; 0, Ũ, b̃))‖ > 0. Since E is twice continuously differentiable

in V , the last term is finite and O (α2), hence for sufficiently small α, we have

E
�

f̃ ◦ Pσ(x ; V̂ (α), Ũ , b̃)
�
< E
�

f̃ ◦ Pσ(x ; 0, Ũ, b̃)
�
= E( f̃ ), (2.63)

which completes the proof.
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Remark 2.4. Note that the non-degeneracy condition in Assumption 2.4 was crucial in the

proof above to show that there exists a non-zero derivative of the error E. Linear and higher

order polynomial activations do not satisfy the degeneracy condition, and hence we cannot

ensure improvement using the argument above.

Remark 2.5. We now discuss the condition µ(X ∩ (∪n
i=1
Xi)) > 0. First, since E( f̃ ) > 0,

we must have µ(X ) > 0. In order to have an improvement via gradient descent, in X we

must have some input coordinates that is not linked entirely to dead neurons, i.e. we must

be able to affect the output of f̃ by changing our inputs by a small amount. The condition

µ(X ∩ (∪n
i=1
Xi)) > 0 says precisely this.

3. Scaling Analysis of Convolutional Networks

In this section, we consider the advantages of hierarchical structures used in CNNs

by scaling analysis. Assume the oracle function f ∗(x) : Ω = [0,1]n 7→ [0,1], i.e. the

oracle has bounded range. Moreover, we assume that the oracle function f ∗ belongs to the

compositional function space defined as follows.

Definition 3.1. The compositional function space C c(Ω), where Ω = [0,1]n and n = rp,

is that for any F ∈ C c(Rn) the function F has the compositional form: F = H ◦ G, G =

(G1, G2, . . . , Gp), G i = g ◦T i , g : Rr 7→ R, T i : Ω 7→ Rr where T i(x) = (x(i−1)∗r+1, . . . , x i∗r)
for all i, H : Rp 7→ R.

The form defined in Definition 3.1 is the simplest one with a compositional hierarchical

structure. And many more complex hierarchical functions can be constructed from compo-

sitions and linear combinations of this form. Note that the assumption that all G is are the

same function can be easily generalized to different functions so long as the dimensions

match.

Since the target oracles are usually obtained from the human labels, it is natural to

assume that f ∗ is stable with respect to small perturbations η. Let

η =
∇ f ∗(x)
‖∇ f ∗(x)‖

p
nε,

i.e. the perturbation is on average O (ε) for each dimension. In practice, the oracle should

be stable to this kind of perturbation. That is,

| f ∗(x +η)− f ∗(x)| ≤ pn‖∇ f ∗(x)‖ε+ O
�
‖ε‖2
�
≪ 1. (3.1)

So we must have ‖∇ f ∗(x)‖ = O (1/pn). Otherwise, the oracle is not stable and is vulner-

able to the well known adversarial perturbations [13, 35]. Therefore, it is reasonable to

make the following assumption.

Assumption 3.1. The oracle f ∗ belongs to C c(Ω) and L(H) = O (1/pp), L(g) = O (1/pr),

where L(H) and L(g) are the Lipschitz constants for H and g, respectively.
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The above assumption implies the Lipschitz constant of f ∗ is O (1/pn).

Definition 3.2. Let N (ǫ, n; f ) to be the minimum number of hidden units needed to achieve

ǫ approximation accuracy of f using fully connected networks with one hidden layer.

Definition 3.3. The (ǫ,α,β , n)-class function space H ⊂ C(Rn) such that N (ǫ, n; f ) =

O (nα/ǫβ) for all f ∈H .

Regarding the number of total parameters needed to achieve a desired accuracy, we

have the following estimate.

Theorem 3.1. Suppose Assumption 3.1 holds. If f ∗ belongs to (ǫ,α,β , n)-class, g belongs

to (ǫ,α,β , r)-class and H belongs to (ǫ,α,β , p)-class. Let S1 be the minimal total number

of parameters needed to achieve ǫ accuracy for the fully connected network with one hidden

layer. Then,

S1 = O
�

nα+1

ǫβ

�
. (3.2)

Moreover, there is a convolutional network Ĝ and a fully connected network Ĥ such that

‖Ĥ ◦ Ĝ− o‖ ≤ ǫ and S2 = O
�

rα+1

ǫβ
+

pα+1

ǫβ

�
, (3.3)

where S2 is the total number of parameters of Ĥ and Ĝ.

Proof. Since the total number of parameters in a two-layer fully connected network

with K hidden units is (n+ 2)K , where n is the dimension of the input signal, we have

S1 = N (ǫ, n; f ∗)(n+ 2) =

�
nα

ǫβ

�
(n+ 2) = O
�

nα+1

ǫβ

�
. (3.4)

Since g belongs to (ǫ,α,β , r)-class, there exists qg = O (rα/ǫβ) hidden units such that

‖g − g̃‖ ≤ ǫ/2DH , (3.5)

where g̃ =
∑qg

i=1
a

g

i
σ(w

g⊤
i

x + b
g

i
) and DH/

p
n is the Lipschitz constant of H and DH is

a constant. Similarly, since H belongs to (ǫ,α,β , p)-class, there exists qH = O (pα/ǫβ)
hidden units such that

‖H − Ĥ‖ ≤ ǫ/2, (3.6)

where Ĥ =
∑qH

i=1
aH

i
σ(wH⊤

i
x + bH

i
).

Following the same construction step in Theorem 2.8, we can obtain a convolutional

network Ĝ : Rn 7→ R1×p. Then, we know Ĝ(x) = (G1, G2, . . . , Gp) and G i = ĝ ◦ Ti for all

i = 1, . . . , p. Therefore,

‖H(G)− Ĥ(Ĝ)‖2 ≤ ‖H(G)−H(Ĝ)‖2 + ‖H(Ĝ)− Ĥ(Ĝ)‖2
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=

�∫

Ω

|H(G(x))−H(Ĝ(x))|2dµ(x)

�1/2
+

�∫

Ω

|H(Ĝ(x))− Ĥ(Ĝ(x))|2dµ(x)

�1/2

≤
�∫

Ω

D2
H p−1‖G(x)− Ĝ(x)‖22dµ(x)

�1/2
+

�∫

Ω

|H(Ĝ(x))−H(Ĝ(x))|2dµ(x)

�1/2

≤
�∫

Ω

D2
H p−1

p∑

i=1

ǫ2

4D2
H

dµ(x)

�1/2
+

�∫

Ω

|H(Ĝ(x))− Ĥ(Ĝ(x))|2dµ(x)

�1/2

≤ 1

2
ǫ +

�∫

Ω

1

4
ǫ2dµ(x)

�1/2
= ǫ, (3.7)

where the second inequality is due to the Lipschitz continuity of H. Moreover, the number

of parameters in Ĥ ◦ Ĝ is

S2 = N

�
ǫ

2DH

, r; g

�
r + N

�ǫ
2

, p; H

�
p = O
�

rα+1

ǫβ
+

pα+1

ǫβ

�
, (3.8)

which completes the proof.

Although the exact approximation rate of a fully connected network with one hidden

layer is difficult, the upper bound of such estimation exists in several cases. For example,

the function class in [2] is approximated with rate N (ǫ, n; f ) = O (C2
f
/ǫ), where C f =∫

‖ω‖| f̂ (ω)|dω depends polynomially or exponentially on d . In [1], some interesting cases

with C f = O (n) are given, i.e. α = 2,β = 1. From the above theorem, we see the obvious

advantage of compositional convolutional network. The bounds constitute as sufficient

conditions. Moreover, the above argument could be easily generalized to convolutional

networks with multiple hidden layers as shown in next corollary.

Corollary 3.1. Let F : Ω 7→ R, n = r L, g1, . . . , gL : Rr 7→ R. F = gL ◦ GL, Gl : Rr L−l+1 7→
R

r ,Gl = (G l ,1, G l ,2, . . . , G l ,r), G l ,i : Rr L−l+1 7→ R. G l = g l ◦Gl−1, l = 1, . . . , L. Assume n≫ r,

Lip(gl) = O (1/
p

r),∀ l = 1, . . . , L. If F belongs to (ǫ,α,β , n)-class, g belongs to (ǫ,α,β , r)-

class, then the total number of parameters S1, of using fully connected network to approxi-

mate F, is

S1 = O
�

nα+1

ǫβ

�
, (3.9)

and there exists a convolutional network that achieves ǫ-accuracy with total number of pa-

rameters

S2 = O
�

rα+1

ǫβ
(log n)β+1

�
. (3.10)

Proof. Similar to the proof of Theorem 3.3, we only need to approximate each gl : Ω 7→
R to O (ǫ/L), then entire approximation will be in order of O (ǫ). So
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S2 = N

� ǫ
L

, r

�
r + N

� ǫ
L

, r

�
r + · · ·+ N

� ǫ
L

, r

�
r

= LN

� ǫ
L

, r

�
r = O
�

rα+1

ǫβ
Lβ+1

�
, (3.11)

which completes the proof.

Thus, using the CNN architecture, the number of parameter used only depends on

(log n)β+1, which is much better than O (nα+1) of fully-connected networks. In the usual

case like image recognition where n is large, this means that for hierarchical functions,

using deep convolutional networks is exponentially more parameter efficient than fully

connected network. Theorem 3.3 and Corollary 3.1 establish that using convolutional net-

works to approximate compositional functions has huge advantages. Moreover, observe

that sampling errors can also be shown to be improved using a similar analysis. For exam-

ple, define N (m,ǫ) to be the number of samples needed to achieve ǫ accuracy for a fully

connected network with one hidden layer and S parameters. Assume N (S,ǫ) = O (mα/ǫβ ),
then similar scaling arguments can be used to characterize the sampling error. We see

from the above proof that when comparing network structures, the result is independent

of β . This implies that composed convolutional network also has much better sample error

estimates.

4. Conclusion

In this paper, we proved that under suitable conditions, convolution neural networks

can inherit the universal approximation property of its last fully connected two-layer net-

work. Moreover, we show that nonlinearity in the transformations is important to allow for

local improvements of the approximation via composition. Finally, we proved that when the

target function class has a compositional structure, using convolutional networks requires

fewer parameters, less computation and fewer samples compared with fully connected net-

works achieving the same accuracy. When the compositional structure is hierarchical, the

reduction in parameters is exponential in the number of compositional levels. An interest-

ing future direction is to explore the class of compositional hierarchical functions. Many

functions resulted from Markovian physical process are of this form, it would be interesting

to model such processes and develop a generative mechanism for such functions.
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Appendix A. Proof of Theorem 2.3

The next lemma shows the bound of two functions f1, f2 inH L,K under E and Ez.

Lemma A.1. For any f1, f2 ∈ H (Ω), the following inequalities hold:

|Ez( f1)−Ez( f2)| ≤ 2M‖ f1 − f2‖∞, |E( f1)−E( f2)| ≤ 2M‖ f1 − f2‖∞. (A.1)

Proof. Since

m∑

i=1

�
f1(x i)− o(x i)
�2 −

m∑

i=1

�
f2(x i)− o(x i)
�2

=

m∑

i=1

�
f1(x i)− f2(x i)
��

f1(x i)− o(x i) + f2(x i)− o(x i)
�

≤ 2mM‖ f1 − f2‖∞. (A.2)

Then the first inequality in (A.1) holds. Similarly, we also have

|E( f1)−E( f2)| ≤
∫

Ω

��� f1(x)− f2(x)
��

f1(x)− c(x) + f2(x)− c(x)
���dµ(x)

≤ 2M‖ f1 − f2‖∞. (A.3)

This ends the proof.

Let { f j}kj=1
, where K = NHL,K

(γδ/2) is a sequence such that HL,K is covered by L∞

balls in H L,K centered at f j with radius γδ/2. Define Ω j = { f : ‖ f − f j‖ ≤ γδ/2M},
1 ≤ j ≤ k. Then we have H L,K ⊂ ∪k

j=1
Ω j. For each j, denote ξ = ( f j(ζ) − o(ζ))2 as

a random variable, where ζ is a i.i.d random variable drawn from the distribution ρ = µ

on Ω. Note that f j ∈ H L,K and the definition of c, implies that ‖ f j‖∞ ≤ 1 and ‖c‖∞ ≤ 1.

Thus we have ξ− Eξ ≤ 1. Furthermore,

Eξ2 = E
�

f j(ζ)− c(ζ)
�4 ≤ E
�

f j(ζ)− c(ζ)
�2
= Eξ. (A.4)

Applying Lemma 2.1 to ξ with B = η = 1, we have

P

¨
E( f j)−Ez( f j)Æ
E( f j) +δ

> γ
p
δ

«
≤ exp

�
−3γ2mδ

8

�
, (A.5)

where we used the fact that

Eξ= E
�

f (ζ)− c(ζ)
�2
=

∫

Ω

�
f (x)− c(x)
�2

dµ(x) = E( f ).

By the definition of covering number, for any function f ∈H L,K, there exists a function f j

such that ‖ f − f j‖ ≤ γδ/2M . This together with Lemma A.1, yields

|Ez( f )−Ez( f j)| ≤ 2M‖ f − f j‖∞ ≤ γδ,

|E( f )−E( f j)| ≤ 2M‖ f − f j‖∞ ≤ γδ.
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Therefore, since E( f ) ≥ 0,

|Ez( f )−Ez( f j)|p
E( f ) +δ

≤ γ
p
δ,
|E( f )−E( f j)|p
E( f ) +δ

≤ γ
p
δ. (A.6)

By the second inequality, we have

E( f j) +δ = E( f j)−E( f ) +E( f ) +δ ≤ γ
p
δ
Æ
E( f ) +δ+E( f ) +δ

≤
p
δ
Æ
E( f ) +δ+E( f ) +δ ≤ 2(E( f ) +δ), (A.7)

which leads to q
E( f j) +δ ≤ 2
Æ
E( f ) +δ

for any f j . Now, if we assume that

E( f )−Ez( f )p
E( f ) +δ

> 4γ
p
δ,

then we have

E( f j)−Ez( f j)

2
p
E( f ) +δ

≥ E( f )−Ez( f )

2
p
E( f ) +δ

−
E( f )−E( f j)

2
p
E( f ) +δ

−
Ez( f j)−Ez( f )

2
p
E( f ) +δ

> 2γ
p
δ− γ
p
δ

2
− γ
p
δ

2
= γ
p
δ. (A.8)

Since we have q
E( f j) +δ ≤ 2
Æ
E( f ) +δ

for any f ∈ Ω j, then if the condition

E( f )−Ez( f )p
E( f ) +δ

> 4γ
p
δ

holds, then the following inequality:

E( f j)−Ez( f j)

2
Æ
E( f j) +δ

≥
E( f j)−Ez( f j)

2
p
E( f ) +δ

> γ
p
δ (A.9)

holds. Hence, for each fixed j, 1≤ j ≤ k,

P

�
sup f ∈Ω j

E( f )−Ez( f )p
E( f ) + δ

> 4γ
p
δ

�
≤ P
¨
E( f j)−Ez( f j)Æ
E( f j) +δ

> γ
p
δ

«
. (A.10)

SinceH L,K ⊂ ∪k
j=1
Ω j , we have

P

�
sup f ∈H (Ω)

E( f )−Ez( f )p
E( f ) +δ

> 4γ
p
δ

�
≤

k∑

j=1

P

�
sup f ∈Ω j

E( f )−Ez( f )p
E( f ) +δ

> 4γ
p
δ

�
, (A.11)
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combined with (A.5), (A.10) and k =NH L,K (γδ/2), yields

P

�
sup f ∈H L,K

E( f )−Ez( f )p
E( f ) +δ

> 4γ
p
δ

�
≤NH L,K

�
γδ

2M

�
exp

�
−3γ2mδ

8

�
. (A.12)

This completes the proof.
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