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Abstract. We investigate time complexities of finite difference methods for solving the

multiscale transport equation by quantum algorithms. It is found that the time complex-

ity of classical and quantum treatments of the standard explicit scheme scale is O (1/ε),
where ε is a small scaling parameter. On the other hand, the complexity of the even-odd

parity based asymptotic-preserving (AP) schemes do not depend on ε. This indicates

that in quantum computing, AP schemes (and probably other multiscale ones) are of

great importance for solving multiscale transport and kinetic equations.
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1. Introduction

Transport equations arise in many important applications, from medical imaging, astro-

physics, nuclear reactor, to wave propagation in random media and semiconductor device

modeling [4,5,25,26]. These equations model probability distribution of particles in a back-

ground medium, thus are defined in phase space, suffering from curse-of-dimensionality.

In addition, the problem may encounter multiple temporal and spatial scales, and the nu-

merical resolution of the small scales will further increase the computational cost tremen-

dously. Despite of rapid development of multiscale methods, high dimensionality and mul-

tiple scales could still pose a major challenge for numerical simulations for transport, and

more generally, kinetic equations by classical computers.

On the other hand, quantum computers, in various instances, have been shown to ex-

hibit potential polynomial and even exponential advantage over the classical computers,
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if one designs adequate quantum algorithms. One of such possibilities is linear algebra

problems [6,10,12]. After numerical discretizations, ordinary and partial differential equa-

tions can also be formulated as linear algebra problems thus can also use quantum linear

algebra solvers to gain quantum advantages in dimension, precision, and the evolution

time [2,7,9,14,16,19,22,23]. Most of these works aim at producing quantum state, after

which a measurement is needed to extract classical data. In [14] though, physical observ-

ables are obtained with possible quantum advantage.

In particular, in [16], for a linear hyperbolic relaxation system with possibly stiff relax-

ation, it shows that a good multiscale scheme – in this case the popular in kinetic community

asymptotic-preserving (AP) scheme, has shown its advantage for quantum algorithms over

standard non-AP schemes. Specifically, the numerical complexity that depends on the recip-

rocal of the small physically scaling scales is great relaxed: the complexity of AP quantum

algorithms is independent of the small scaling parameter.

In this article we study the multiscale linear transport equation

ε∂t f + v∂x f =
1

ε

�
1

2

∫ 1

−1

f d v′ − f

�
, xL < x < xR, −1≤ v ≤ 1, (1.1)

where f = f (t, x , v) is the probability density distribution for particles at space point x ∈ R,

time t, and v ∈ (−1,1) is the cosine of the angle between the particle velocity and the x -axis.

Comparing with the work in [16], here the equation is in the phase space, and one needs

to also discretize the velocity (or angle) variable, and to deal with the nonlocal collision

operator, hence further complicating the development of numerical approximations and the

study of their time complexity for quantum algorithms. Our goal is to compare the time

complexity of quantum algorithms based on an AP scheme [17] and a standard (explicit,

thus not AP) scheme and show that the former has a complexity independent of the small

physical scaling parameter ε while the latter depends on it. Hence, it demonstrates that

multiscale methods still make a big difference in terms of time complexity even for quantum

algorithms.

Since our aim is to compare the difference in dependence of ε, in this article we will only

study the spatially one dimensional equation. Quantum advantages in spatial dimensions

for numerical methods of partial differential equations have been well studied in other

literature, see for examples [7,15,16,21].

Compared with the earlier work [16], where a multiscale hyperbolic relaxation system

was studied, here in the time complexity analysis for transport equation defined in the

phase space with a nonlocal collisional term, the analytic difficulty is to give a lower bound

of the minimum singular value of the coefficient matrix. When neglecting the nonlocal

term, one easily observes that the problem is reduced to the prototype problem for fixed

velocity variable. Its simplicity allows one to estimate the singular values of the coefficient

matrix directly, in which the proof ultimately boils down to the upper bound of the 2-norm
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of the inverse matrix of K in the form of

K =





I

−B1 I
. . .

. . .

−B1 I



 ,

which satisfies ‖B1‖ ≤ 1 under an appropriate CFL condition and leads to the expected

estimate

‖K−1‖ ≤ 1+ ‖B1‖+ ‖B1‖2 + · · ·+ ‖B1‖Nt−1 ≤ Nt .

In contrast, the inclusion of the integral term due to the nonlocal collision operator makes

the discretization fully coupled in the angular direction, so the direct manipulation of the

coefficient matrix will be rather involved as opposed to the analysis for the prototype prob-

lem. For this reason, we instead characterize the singularity by using the Fourier analysis

approach on the spatial variable, which enables us to derive the CFL condition quite natu-

rally, and makes the system more convenient to perform the perturbation technique. Our

analysis also relies on the special properties of a rank-one matrix composed of the weights

of the numerical integration as introduced in the proof of Theorem 3.1.

2. Even-Odd Parity Based AP Scheme for Multiscale Transport Equation

In this section we will review an AP scheme for (1.1), viz the diffusive relaxation

scheme, proposed in [17].

2.1. A diffusive relaxation system

The transport equation can be reformulated to the diffusive relaxation system. To this

end, let us split it into two equations, each for v > 0

ε∂t f (v) + v∂x f (v) =
1

ε

�
1

2

∫ 1

−1

f d v − f (v)

�
,

ε∂t f (−v)− v∂x f (−v) =
1

ε

�
1

2

∫ 1

−1

f d v − f (−v)

�
.

Introducing the even- and odd-parities

r(t, v, x) =
1

2

�
f (t, v, x) + f (t,−v, x)

�
,

j(t, v, x) =
1

2ε

�
f (t, v, x)− f (t,−v, x)

�
,

one has the following system:

∂t r + v∂x j =
1

ε2
(ρ − r),

∂t j +
v

ε2
∂x r = − 1

ε2
j,

(2.1)
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where

ρ(t, x) =

∫ 1

0

rdv.

The idea of [18] is to rewrite (2.1) as the following diffusive relaxation system:

∂t r + v∂x j = − 1

ε2
(r −ρ),

∂t j +φv∂x r = − 1

ε2

�
j + (1− ε2φ)v∂x r

�
,

(2.2)

where φ = φ(ε) satisfies 0 ≤ φ ≤ 1/ε2. The requirement of φ guarantees that φ(ε)

and 1 − ε2φ(ε) are positive, making the problem uniformly stable when ε is small. A

simple choice is φ(ε) = min{1,1/ε}. In what follows, we take φ = 1 since we are mainly

concerned with the case of ε≪ 1.

2.2. A diffusive relaxation scheme

Ref. [18] presented a natural splitting of (2.2) which consists of combining the relax-

ation step

∂t r = −
1

ε2
(r −ρ),

∂t j = − 1

ε2

�
j + (1− ε2)v∂x r

� (2.3)

with the transport step

∂t r + v∂x j = 0,

∂t j + v∂x r = 0.
(2.4)

Now we use some discretization methods to deal with the two steps.

2.2.1. Relaxation step

To have a good stability property, considering the implicit discretization for the relaxation

term (2.3), one can obtain

r∗ − rn

τ
= − 1

ε2
(r∗ −ρ∗),

j∗ − jn

τ
= − 1

ε2

�
j∗ + (1− ε2)v∂x r∗

�
.

(2.5)

We remark that the above system can be implemented explicitly on a classical computer

since ρ is preserved, i.e., ρ∗ = ρn, and hence

r∗ − rn

τ
= − 1

ε2
(r∗ −ρn),

j∗ − jn

τ
= − 1

ε2

�
j∗ + (1− ε2)v∂x r∗

�
,



Time Complexity Analysis of Quantum Difference Methods for Multiscale Transport Equations 721

where the integral given by ρ will be approximated by the Gaussian quadrature rule

ρ(t, x) =

∫ 1

0

r(t, v, x)dv ≈
N∑

k=1

wkr(t, vk, x)

with (vk, wk) being the Gaussian quadrature points and weights on [0,1].

The spatial mesh of x is defined as x0 < x1 < · · · < xNx
< xNx+1 (where x0 and

xNx+1 are boundary points), and the discrete time are t0 < t1 < · · · < tNt
. Let ukm be the

approximation to u(vk, xm). Then the discrete scheme of (2.5) is

r∗
km
=

1

1+τ/ε2

�
rn

km
+
τ

ε2
ρn

m

�
,

j∗km =
1

1+ τ/ε2

�
jn
km
− τ
ε2
(1− ε2)vk

r∗
k,m+1
− r∗

k,m−1

2h

�
,

(2.6)

where k = 1, . . . , N and m = 1, . . . , Nx . For fixed vk, we define uk = [uk1,uk2, · · · ,uk,Nx
]T

and write (2.6) in vector form as

r ∗
k
=

1

1+τ/ε2

�
r n

k
+
τ

ε2
(w1r n

1
+ · · ·+wN r n

N
)

�
,

j∗
k
=

1

1+τ/ε2

�
j n

k
− τ

2hε2
(1− ε2)vkMhr ∗

k
− τ

2hε2
(1− ε2)vk
eb∗k
�

,

k = 1,2, . . . , N ,

where

Mh =





0 1

−1 0
.. .

. . .
. . .

. . .

. . . 0 1

−1 0





Nx×Nx

, ebk(t) =





−rk0(t)

0
...

0

rk,Nx+1(t)




.

Let r = [r 1; r 2; · · · ; r N ], where “;” indicates the straightening of {r i}i≥1 into a column

vector. Then,

r ∗ =
1

1+τ/ε2

�
I +
τ

ε2
W ⊗ I

�
r n,

j∗ =
1

1+τ/ε2

�
j n − τ

2hε2
(1− ε2)V ⊗Mhr ∗ − τ

2hε2
(1− ε2)eb∗v
�

,

where eb∗v = [v1
eb1; · · · ; vN
ebN], V = diag([v1, v2, · · · , vN]), and

W =





w1 w2 · · · wN

w1 w2 · · · wN
...

...
. . .

...

w1 w2 · · · wN





N×N

.
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2.2.2. Transport step

For the transport step (2.4), by introducing the Riemann invariants U = r+ j and V = r− j,

one can obtain

∂t U + v∂x U = 0,

∂t V − v∂x V = 0.

Applying the upwind scheme to the spatial derivative gives

rn+1
km
= (1−λvk)r

∗
km +

λvk

2

�
r∗k,m+1+ r∗k,m−1

�
− λvk

2

�
j∗k,m+1− j∗k,m−1

�
,

jn+1
km
= (1−λvk) j

∗
km +

λvk

2

�
j∗k,m+1+ j∗k,m−1

�
− λvk

2

�
r∗k,m+1− r∗k,m−1

�
,

(2.7)

where λ= τ/h. Similarly, for the fixed k, one has

r n+1
k
=

�
I +
λvk

2
Lh

�
r ∗k −

λvk

2
Mh j∗k +

λvk

2

�
b∗k −ec

∗
k

�
,

j n+1
k
=

�
I +
λvk

2
Lh

�
j∗

k
− λvk

2
Mhr ∗

k
+
λvk

2

�
c∗

k
− eb∗

k

�
,

k = 1,2, . . . , N ,

where

Lh =





−2 1

1 −2
...

. . .
. . .

. . .

. . . 1

1 −2




, bk =





rk0

0
...

0

rk,Nx+1




, ck =





jk0

0
...

0

jk,Nx+1




, eck =





− jk0

0
...

0

jk,Nx+1




.

We rewrite the scheme in matrix form

r n+1 =

�
I +
λ

2
V ⊗ Lh

�
r ∗ − λ

2
V ⊗Mh j∗ +

λ

2
f ∗v ,

j n+1 =

�
I +
λ

2
V ⊗ Lh

�
j∗ − λ

2
V ⊗Mhr ∗ +

λ

2
g ∗

v
,

where

f ∗v =




v1(b

∗
1
−ec∗

1
)

...

vN (b
∗
N
−ec∗

N
)



 , g ∗v =




v1(c
∗
1
− eb∗

1
)

...

vN (c
∗
N − eb

∗
N )



 .
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3. Time Complexity Analysis of AP Scheme

3.1. Quantum difference method

Let A = (λ/2)V ⊗Mh, B = I + (λ/2)V ⊗ Lh and γ = τ/ε2. Substituting r ∗ and j∗ into

r n+1, we obtain

r n+1 = Br ∗ − Aj∗ +
λ

2
f ∗

v

= Br ∗ − 1

1+ γ
A

�
jn − (1− ε

2)

ε2
Ar ∗ − λ(1− ε

2)

2ε2
eb∗v

�
+
λ

2
f ∗v

=

�
B+

1

1+ γ

(1− ε2)

ε2
A2

�
r ∗ − 1

1+ γ
Aj n +

1

1+ γ

λ(1− ε2)

2ε2
Aeb∗v +

λ

2
f ∗v

=
1

1+ γ

�
B+

1

1+ γ

(1− ε2)

ε2
A2

�
(I + γW ⊗ I)r n − 1

1+ γ
Aj n

+
1

1+ γ

λ(1− ε2)

2ε2
Aeb∗v +

λ

2
f ∗v

=
1

1+ γ

�
B+

1− ε2

τ+ ε2
A2

�
(I + γW ⊗ I)r n − 1

1+ γ
Aj n +

λ(1− ε2)

2(τ+ ε2)
Aeb∗

v
+
λ

2
f ∗

v

=: B1r n − A1 j n + ef n+1
,

where

B1 =
1

1+ γ

�
B+

1− ε2

τ+ ε2
A2

�
(I + γW ⊗ I), A1 =

1

1+ γ
A.

A similar calculation gives

jn+1 = B j∗ − Ar ∗ +
λ

2
g ∗

v

=
1

1+ γ
B

�
jn − (1− ε

2)

ε2
Ar ∗ − λ(1− ε

2)

2ε2
eb∗v

�
− Ar ∗ +

λ

2
g ∗v

=
1

1+ γ
B jn −
�

1

1+ γ

1− ε2

ε2
BA+ A

�
r ∗ − 1

1+ γ

λ(1− ε2)

2ε2
Beb∗

v
+
λ

2
g ∗

v

=
1

1+ γ
B jn − 1

1+ γ

�
1− ε2

τ+ ε2
BA+ A

�
(I + γW ⊗ I)r n − λ(1− ε

2)

2(τ+ ε2)
Beb∗v +

λ

2
g ∗v

=: A2 jn − B2r n + eg n+1,

where

B2 =
1

1+ γ

�
A+

1− ε2

τ+ ε2
BA

�
(I + γW ⊗ I), A2 =

1

1+ γ
B.

Introducing the notations

S1 =
�
r 1; r 2; · · · ; r Nt
�

, S2 =
�

j1; j2; · · · ; j Nt
�

, S = [S1;S2],
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one obtains the linear system

LS = F ,

where L = (Li j)2×2 and F = [F1; F2], with

L11 =





I

−B1 I
. . .

. . .

−B1 I



 , L12 =





O

A1 O
. . .

. . .

A1 O



 , F1 =





ef 1
+ B1r 0 − A1 j0

ef 2

...

ef Nt




,

L21 =





O

B2 O
. . .

. . .

B2 O



 , L22 =





I

−A2 I
. . .

. . .

−A2 I



 , F2 =





eg 1 − B2r 0 + A2 j0

eg 2

...

eg Nt



 .

For fixed step sizes τ and h, when ε→ 0, one has

1

1+ γ
→ 0,

γ

1+ γ
→ 1,

and hence

B2 =

�
A+

1− ε2

τ+ ε2
BA

�
1

1+ γ
(I + γW ⊗ I)→

�
A+

1

τ
BA

�
W ⊗ I .

Considering the amplification factor τ−1, as in [16] we reformulate the linear system as

�
L11 τ−1L12

τL21 L22

��
τ−1S1

S2

�
=

�
τ−1F1

F2

�
, (3.1)

where S̃1 = τ
−1S1 and S̃2 = S2. This means we consider a linear system with new variables

r̃ = τ−1r and j̃ = j.

Remark 3.1. For the output of quantum algorithms, we are not interested in the quantum

state but the induced physical observables, defined as

〈O〉 :=
∫ 1

−1

G(v) f (v)dv,

which yields, for examples, the density and flux by taking for G(v) = 1, v respectively. One

easily finds that

〈O〉=
∫ 1

0

G(v)r(v)dv.
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This means that we only need to project the final quantum state onto |r 〉 when computing

the above physical observables. This is referred to as the level set encoding, which could

have quantum advantages even if one computes the physical observables (at least if one is

only interested in solution in a submanifold of the computational domain). See [14].

On the other hand, we can reformulate the resulting linear system such that the query

complexity in obtaining either [S1,S2], [τ
−1S1,S2] or [S1,τ−1S2] are the same. For details,

please refer to the discussion below [16, Theorem 5.2].

3.2. Input model

In this article we will apply the optimal quantum linear systems algorithm (QLSA) pro-

posed in [6] to solve the resulting linear system. Of course the specific quantum linear

algebra solver is not unique. One could also use, for example, the block encoding algo-

rithms [1]. To this end, let us first state the quantum linear systems problem.

Definition 3.1 (Quantum Linear Systems Problem (QLSP) [6]). Consider the linear system

Ax = b, where A is an N×N Hermitian matrix, x = [x0, · · · , xN−1]
T , and b = [b0, · · · , bN−1]

T .

Assume x and b can be encoded as

|x〉= 1

Nx

N−1∑

i=0

x i|i〉, |b〉=
1

Nb

N−1∑

i=0

bi|i〉,

where Nx = (x
2
0 + · · ·+ x2

N−1)
1/2 and Nb = (b

2
0 + · · ·+ b2

N−1)
1/2 are normalization constants.

Then the goal of QLSA is the following. When the access to A and Uini t ial (Uini t ial is a unitary

operation such that Uini t ial |0〉= |b〉) are given, one aims to prepare a quantum state |x ′〉 that

is η-close to |x〉, i.e., ‖|x ′〉 − |x〉‖ ≤ η.

In the above definition, the access to the matrix A refers to query the elements of A.

The time complexity is usually measured by the number of calls of oracles for positions of

nonzero entries of sparse matrices.

Definition 3.2 (Input Model for the Matrix [3,14]). Sparse access to a Hermitian matrix A

is a 4-tuple (s,‖A‖max,OA,OF ), where s is the sparsity of A, and ‖A‖max =maxi, j |Ai j|. OA and

OF are black boxes of unitary operations. OA can access the matrix elements Ai j such that

OA| j〉|k〉|z〉 = | j〉|k〉|z ⊕ A jk〉

for any j, k ∈ {1,2, . . . , N} := [N], where the third register holds a bit string representing of

A jk. OF allows to perform the map

OF | j〉|l〉= | j〉|F( j, l)〉

for any j ∈ [N] and l ∈ [s], where the function F outputs the column index of the l-th non-zero

elements in row j.
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With these definitions, query complexity refers to the number of times oracles OA,OF

and Uini t ial are applied throughout the whole algorithm. Because the resulting coefficient

matrices for partial differential equations are usually sparse, query complexity is often used

to measure the time complexity of quantum algorithms. It should be noted, however, that

query complexity of some algorithms is not measured by the number of sparse unitary

operations OA,OF and Uini t ial , but is in terms of calls to a block encoding of the coefficient

matrix, defined as follows.

Definition 3.3 (Block Access to the Matrix [14,20]). Let A be a m-qubit Hermitian matrix,

δA > 0 and nA is a positive integer. An (m+nA)-qubit unitary matrix UA is a (αA, nA,δA)-block

encoding of A if

‖A−αA 〈0nA |UA|0nA〉‖ ≤ δA.

Block access to A is then the 4-tuple (αA, nA,δA, UA) where UA is the unitary black-box block-

encoding of A.

In some cases, the block access to A can be constructed from the sparse access to A. If

standard methods are used to construct the block access from the sparse access, there will

be a multiplicative factor s in the query complexity of block encoding. We also refer the

reader to [3,11,14,16,24,28] for detailed discussions.

We assume ‖A‖max < 1 throughout the discussion, unless otherwise stated, since the

complexity can have a contribution proportional to ‖A‖max. Otherwise we can simply re-

place it by the re-scaled matrix A/α for some α > ‖A‖max, where ‖A‖max =maxi j |Ai j|.

3.3. Time complexity of the AP scheme

In this article we apply the optimal quantum linear systems algorithm (QLSA) proposed

in [8] to solve the resulting linear system. The query complexity with respect to the sparse

access to matrices can be written as

Q = O
�

sκ log

�
1

δ

��
, (3.2)

where s is the sparsity of the coefficient matrix, κ is the condition number, and δ is the

error bound.

Theorem 3.1. Suppose that the time step τ and the space step h satisfy τ/h2 ≤ 1/(1+ h).

1. For sufficiently small ε, the singular value of the coefficient matrix in (3.1) satisfies

σmin ¦
1

N1/2Nt

−α(ε), σmax ® N1/2 +α(ε),

where

α(ε) =
ε2

τ+ ε2

�
N1/2τ+ N1/2 +τ+

1

τ

�
+
ε2(1− ε2)

(ε2 +τ)2
(1+τ)

+
ε2(ε2 + 2τ+τ2)

τ(ε2 +τ)2
N1/2

�
1+

1

τ

�
,

which tends to zero as ε→ 0.
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2. The sparsity and the condition number of the coefficient matrix satisfy s = O (N ) and

κ = O (N Nt).

3. The time complexities of the classical treatment and the quantum treatment for solving

(3.1) are

C = O
�
N2Nt Nx

�
, Q = O
�
N2Nt log(Nx )
�

.

Given the error bound δ, we set h = O (δ). If Nt = O (N2
x ), then

C = O
�
N2N3

x

�
= O
�
N2δ−3
�

, Q = O
�
N2N2

x log(Nx)
�
= O
�
N2δ−2 logδ−1
�

.

Proof. Since the problem is linear, one can apply the discrete Fourier transform to char-

acterize the singular values of the coefficient matrix. In the following, we only consider the

discrete Fourier transform for the spatial variables.

1. Introduce the following expressions:

rn
km
= r̂n

k
eimξh, jn

km
= ĵn

k
eimξh, r∗km = r̂∗keimξh, j∗km = ĵ∗keimξh,

where ξ represents the frequency variable and i =
p
−1. Plugging them in (2.6) and (2.7),

one obtains

r̂∗
k
=

1

1+ γ

�
r̂n

k
+ γ

N∑

k′=1

wk′ r̂
n
k′

�
,

ĵ∗
k
=

1

1+ γ

�
ĵn
k
− 1− ε2

ε2
iλ sin(ξh)vk r̂∗

k

�

and

r̂n+1
k
= (1−λvk)r̂

∗
k
+λ cos(ξh)vk r̂∗

k
− iλ sin(ξh)vk ĵ∗

k
,

ĵn+1
k
= (1−λvk) ĵ

∗
k
+λ cos(ξh)vk ĵ∗

k
− iλ sin(ξh)vk r̂∗

k
.

Eliminating r∗ and j∗ yields

r̂n+1
k
+ c1,ε r̂

n
k
+ c2,ε ĵn

k
+ γc1,ε

N∑

k′=1

wk′ r̂
n
k′ = 0,

ĵn+1
k
+ d1,ε ĵn

k
+ d2,ε r̂

n
k
+ γd2,ε

N∑

k′=1

wk′ r̂
n
k′ = 0,

(3.3)

where n= 0,1, . . . , Nt − 1 and

c1,ε = −
1

1+ γ

�
(1−λvk) +λvk cos(ξh)

�
− 1

(1+ γ)2
1− ε2

ε2

�
iλvk sin(ξh)
�2

,

c2,ε =
1

1+ γ
iλvk sin(ξh),

d1,ε = −
1

1+ γ

�
(1−λvk) +λvk cos(ξh)

�

d2,ε =
1

(1+ γ)2
1− ε2

ε2

�
(1−λvk) +λvk cos(ξh)

�
iλvk sin(ξh) +

1

1+ γ
iλvk sin(ξh).
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For the new variables, the linear system (3.3) should be changed to

τr̃n+1
k
+ c1,ετr̃n

k
+ c2,ε j̃n

k
+ γc1,ετ

N∑

k′=1

wk′ r̃
n
k′ = 0,

j̃n+1
k
+ d1,ε j̃n

k
+ d2,ετr̃n

k
+ γd2,ετ

N∑

k′=1

wk′ r̃
n
k′ = 0.

Let r̃ k = [r̃
1
k
, · · · , r̃

Nt

k
]T , j̃ k = [ j̃

1
k
, · · · , j̃

Nt

k
]T , and

P =





0

1 0
.. .

. . .

1 0





Nt×Nt

.

Then Eq. (3.3) can be written as

τ(I + c1,εP)r̃ k + c2,εP j̃ k +τγc1,εP(w1 r̃ 1 + · · ·+wN r̃ N ) = f̃ k,

(I + d1,εP) j̃ k + τd2,εP r̃ k +τγd2,εP(w1 r̃ 1 + · · ·+wN r̃ N ) = g̃ k,

where k = 1,2, . . . , N , and the right-hand vectors are

f̃ k = −
�
τc1,ε r̃

0
k
+ c2,ε j̃0

k
+τγc1,ε

�
w1 r̃0

1
+ · · ·+wN r̃0

N

�
, 0, · · · , 0
�T

,

g̃ k = −
�
d1,ε j̃0

k
+τd2,ε r̃

0
k
+τγd2,ε

�
w1 r̃0

1 + · · ·+wN r̃0
N

�
, 0, · · · , 0
�T

.

Let R̃ = [r̃ 1; r̃ 2; · · · ; r̃ N], J̃ = [ j̃1; j̃2; · · · ; j̃N ] and S̃ = [R̃; J̃], one obtains the linear system

L̃εS̃ = F̃ ,

where F̃ = [ f̃ 1/τ; · · · ; f̃ N/τ; g̃ 1; · · · ; g̃ N ]

L̃ε =

�
IN ⊗ (I + c1,εP) + γc1,εW ⊗ P τ−1IN ⊗ (c2,εP)

τ(IN ⊗ (d2,εP) + γd2,εW ⊗ P) IN ⊗ (I + d1,εP)

�
.

2. In the following, we utilize the perturbation technique to analyze the condition num-

ber of the coefficient matrix. We first briefly explain the idea of the perturbation technique:

Let L̃ε be the coefficient matrix and L̃ε = L̃0 + E , where L̃0 is the coefficient matrix with

ε= 0. By the Weyl’s inequality [27],

σmax(L̃ε) ≤ σmax(L̃0) + ‖E‖, σmin(L̃ε)≥ σmin(L̃0)− ‖E‖.

Thus, it suffices to determine the condition number of L̃0 and the upper bound of ‖E‖.
Let ε= 0. One has

1

1+ γ0

= 0,
γ0

1+ γ0

= 1,
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where γ0 corresponds to ε= 0. A simple calculation shows that

c1,0 = c2,0 = d1,0 = d2,0 = 0,

γ0c1,0 = −
�
(1−λvk) +λvk cos(ξh)

�
− 1

τ

�
iλvk sin(ξh)
�2

,

γ0d2,0 =
1

τ

�
(1−λvk) +λvk cos(ξh)

�
iλvk sin(ξh) + iλvk sin(ξh),

and hence

L̃0 =

�
IN ⊗ INt

O

O IN ⊗ INt

�
+

�
γ0c1,0W ⊗ P O

τγ0d2,0W ⊗ P O

�
.

For γ0c1,0, one easily gets

|γ0c1,0|=
���−
�
(1−λvk) +λvk cos(ξh)

�
− 1

τ

�
iλvk sin(ξh)
�2���

=

���1−λvk −
τ

h2

�
vk sin(ξh)
�2
+λvk cos(ξh)

��� =: |a+ b|,

where

a = 1−λvk −
τ

h2

�
vk sin(ξh)
�2

, b = λvk cos(ξh).

Noting that

a = 1−λvk −
τ

h2

�
vk sin(ξh)
�2 ≥ 1−λ− τ

h2
,

one has a ≥ 0 when

λ+
τ

h2
≤ 1 or

τ

h2
≤ 1

1+ h
. (3.4)

Then,

|γ0c1,0| = |a+ b| ≤ |a|+ |b| = 1−λvk

�
1− | cos(ξh)|
�
− τ

h2

�
vk sin(ξh)
�2
=: b′,

where the right-hand side satisfies b′ ≥ a ≥ 0 under the condition of (3.4), which also

implies b′ ≤ 1. Let c = λvk(1− cos(ξh)). One has

|τγ0d2,0| = |(1+τ)−λvk(1− cos(ξh))| · |λvk sin(ξh)|
≤ |(1+τ)− c| ≤max{|1+τ− cmin|, |1+ τ− cmax|}
=max{|1+τ+ 0|, |1+τ− 2|}= 1+τ.

3. We first consider the maximum singular value. Since w1 + · · · + wN = 1, one can

check that WW T = ‖w‖2 · 1N , where ‖w‖2 = w2
1 + · · · + w2

N , and 1N is the N -th order

matrix with all entries being 1. Then,

‖WW T‖ ≤ N‖w‖2 ≤ N (w1 + · · ·+wN )
2 = N ,

which gives ‖W‖ ≤ N1/2 and

σmax(L̃0) = ‖L̃0‖ ≤ 1+max{γ0c1,0,τγ0d2,0}‖W‖ · ‖P‖ ® N1/2.
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4. For the minimum singular value, since σmin(L̃0) = 1/‖L̃−1

0 ‖, we only need to provide

a upper bound for ‖L̃−1

0
‖. By definition,



L̃−1

0



= max
‖b‖≤1



L̃−1

0 b


, b = [ f ; g ],

where L̃
−1

0 b clearly corresponds to the following linear system:

r̃n+1
k
+ γ0c1,0

N∑

k′=1

wk′ r̃
n
k′ = f n

k
,

j̃n+1
k
+τγ0c2,0

N∑

k′=1

wk′ r̃
n
k′ = g n

k
,

which can be written in matrix form as

r̃ n+1 = Ar̃ n + f n, A= −γ0c1,0W,

j̃
n+1
= B r̃ n + g n, B = −τγ0c2,0W.

Assume the maximum value is attained at b. Since |γ0c1,0| ≤ 1, ‖W‖ ≤ N1/2 and W 2 =W ,

‖r̃ n‖ ≤ ‖An‖‖ f 0‖+ ‖An−1‖‖ f 1‖+ · · ·+ ‖ f n−1‖ ≤ N1/2
�
‖ f 0‖+ 1
�
.

Similarly, we obtain from τγ0c2,0 ≤ 1+τ that

‖ j̃ n‖ ≤ (1+τ)nN1/2
�
‖g 0‖+ 1
�
® N1/2
�
‖g 0‖+ 1
�
.

Thus, 

L̃−1

0



=


L̃−1

0 b


® N1/2Nt

�
r̃ 0 + 1
�
,

which shows σmin(L̃0) ¦ 1/(N1/2Nt).

5. Now we calculate the L2 norm ‖L̃ε − L̃0‖2 for the perturbation term, where

L̃ε − L̃0 =

�
IN ⊗ c1,εP + (γc1,ε − γ0c1,0)W ⊗ P τ−1IN ⊗ (c2,εP)

τ(IN ⊗ d2,εP + (γd2,ε − γ0d2,0)W ⊗ P) IN ⊗ d1,εP

�
.

A straightforward calculation gives

|c1,ε| ®
ε2

τ+ ε2
+
ε2(1− ε2)

(ε2 + τ)2
,

|γc1,ε − γ0c1,0| ®
ε2

τ+ ε2
+
ε2(ε2 + 2τ+τ2)

τ(ε2 +τ)2
,

|τ−1c2,ε|®
ε2

τ(ε2 +τ)
,
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|τd2,ε| ®
τ(1− ε2)ε2

(ε2 +τ)2
+
τε2

ε2 +τ
,

|τ(γd2,ε − γ0d2,0)| ®
ε2(ε2 + 2τ+τ2)

(ε2 +τ)2
+
τε2

ε2 +τ
,

|d1,ε| ®
ε2

τ+ ε2
.

Since ‖W‖ ≤ N1/2 and ‖P‖ ≤ 1, there holds

‖IN ⊗ c1,εP‖ ≤ ‖IN‖‖c1,εP‖ ≤ |c1,ε|,
‖(γc1,ε − γ0c1,0)W ⊗ P‖ ≤ (γc1,ε − γ0c1,0)‖W‖‖P‖ ≤ N1/2|γc1,ε − γ0c1,0|,
‖τ−1(IN ⊗ c2,εP)‖ ≤ τ−1c2,ε‖IN‖‖P‖ ≤ |τ−1c2,ε|,
‖τIN ⊗ d2,εP‖ ≤ τd2,ε‖IN‖‖P‖ ≤ |τd2,ε|,
‖τ(γd2,ε − γ0d2,0)W ⊗ P)‖ ≤ τ(γd2,ε − γ0d2,0)‖W‖‖P‖ ≤ N1/2|τ(γd2,ε − γ0d2,0)|,
‖IN ⊗ d1,εP‖ ≤ d1,ε‖IN‖‖P‖ ≤ |d1,ε|,

and

‖L̃11,ε − L̃11,0‖ ≤ |c1,ε|+ N1/2|γc1,ε − γ0c1,0|,
‖L̃12,ε − L̃12,0‖ ≤ |τ−1c2,ε|,
‖L̃21,ε − L̃21,0‖ ≤ |τd2,ε|+ N1/2|τ(γd2,ε − γ0d2,0)|,
‖L̃22,ε − L̃22,0‖ ≤ |d1,ε|.

This means ‖L̃ε − L̃0‖ ≤ α(ε), with

α(ε) =
ε2

τ+ ε2

�
N1/2τ+ N1/2 +τ+

1

τ

�
+
ε2(1− ε2)

(ε2 +τ)2
(1+τ)

+
ε2(ε2 + 2τ+τ2)

τ(ε2 +τ)2
N1/2

�
1+

1

τ

�
.

6. Finally, we analyze the time complexity. The classical algorithm is to iteratively solve

the following equations:

r n+1 = B1r n − A1 j n + ef n+1
,

j n+1 = A2 j n − B2r n + eg n+1.

The sparsity of Bi and Ai is O (N ) and the matrix order is O (N Nx). Thus the time complexity

of each iteration step is O (N2Nx), and the time complexity after Nt iterations is

C = O
�
N2Nt Nx

�
.

For the quantum treatment, by the estimates of singular values, the condition number κ=

O (N Nt), and the sparsity s = O (N ). Under the given conditions, the error bound δ = O (h).
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Plug these quantities in (3.2) to get

Q = O
�

sκ log

�
1

δ

��
= O
�
N2Nt log Nx

�
.

This completes the proof.

4. Time Complexity of the Explicit Scheme

4.1. Time complexity analysis

As a comparison, in this section we discuss the time complexity of the explicit scheme

for both the classical and quantum treatments. We use the upwind finite difference to

discretize (1.1). The upwind scheme is

f n+1
k,m
− f n

k,m

τ
+

1

ε
v+

k

f n
k,m
− f n

k,m−1

h
+

1

ε
v−

k

f n
k,m+1
− f n

k,m

h

=
1

ε2

�
1

2

N∑

k′=−N

wk′ f
n

k′,m− f n
k,m

�
, (4.1)

or

f n+1
k,m
−
�
1− λ
ε

�
v+

k
− v−

k

�
− τ
ε2

�
f n
k,m
− λ
ε

v+
k

f n
k,m−1

+
λ

ε
v−

k
f n
k,m+1
− τ

2ε2

∑

k′
wk′ f

n
k′,m = 0,

where λ= τ/h,

α+ =max{α, 0} = α+ |α|
2
≥ 0, α− =min{α, 0} = α− |α|

2
≤ 0.

Let

f m =
�

f−N ,m, f−N+1,m, f−N+2,m, · · · , fN−2,m, fN−1,m, fN ,m

�T

and define

ck = 1− λ
ε

�
v+

k
− v−

k

�
− τ
ε2

.

Then (4.1) can be written as

f n+1
m − C f n

m −
λ

ε
V+ f n

m−1 +
λ

ε
V− f n

m+1 −
τ

2ε2
W f n

m = 0,

where

C = diag(c−N , · · · , c−1, c1, · · · , cN ),

V± = diag(v±−N
, · · · , v±−1

, v±
1

, · · · , v±
N
),

and

W =




w−N · · · w−1 w1 · · · wN

...
...

...
...

...
...

w−N · · · w−1 w1 · · · wN





2N×2N

.
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Let f n = [ f n
1
; f n

2
; · · · ; f n

Nx
]. One has

f n+1 − B f n = bn,

where

bn =
λ

ε

�
V+ f n

0;0; · · · ;0;−V− f n
Nx+1

�

and

B =





C +
τ

2ε2
W −λ

ε
V−

λ

ε
V+ C +

τ

2ε2
W −λ

ε
V−

. . .
. . .

. . .

λ

ε
V+ C +

τ

2ε2
W −λ

ε
V−

λ

ε
V+ C +

τ

2ε2
W





.

Let U = [ f 1; f 2; · · · ; f Nt ]. The linear system for the quantum difference approach can be

written as

LU = F , (4.2)

where

L =





I

−B I
. . .

. . .

−B I



 , F =





b0 + B f 0

b1

...

bNt−1,



 .

Theorem 4.1. Let δ be the error bound and let h = O (εδ) be the spatial step. Suppose the

temporal step satisfies τ ≤ hε2/(ε+ h). Then one has

(1) The singular values of the coefficient matrix in (4.2) satisfies

σmin ¦
1

Nt

, σmax ® N1/2.

(2) The condition number κ = O (N1/2Nt) and the sparsity s = O (N ).

(3) The time complexities of the classical treatment and the quantum treatment for solving

(4.2) are

C = O
�
N2Nt Nx

�
= O
�
N2ε−3δ−2
�

,

Q = O
�
N3/2Nt log Nx

�
= O
�
N3/2ε−2δ−1 log

�
(εδ)−1
��

.

Proof. 1) The truncation error is O (τ+ h/ε+ ((2N )!)−1/ε2). Let the error bound be δ.

Then we can choose h= O (εδ).
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2) We first consider the minimum singular value. By definition, one has σmin(L) =

1/‖L−1‖. It suffices to give an upper bound of ‖L−1‖. By a direct calculation, one obtains

L−1 =





I

B I

B2 . . .
. . .

...
. . .

. . .
. . .

BNt−1 · · · B2 B I




=





I

I
. . .

. . .

I




+





O

B O
. . .

. . .

. . .
. . .

B O




+ · · · ,

hence,

‖L−1‖ ≤ ‖I‖+ ‖B‖+ · · ·+ ‖BNt−1‖.
Now we estimate ‖Bn‖. The matrix B can be split as B = B1 +αB2, where α= τ/ε2,

B1 =





C −λεV−
λ
εV+ C −λεV−

. . .
. . .

. . .
λ
εV+ C −λεV−

λ
εV+ C




, B2 =

1

2





W

W
. . .

W

W




.

When τ ≤ hε2/(ε+ h) or λ≤ ε2/(ε+ h), one easily finds that

ck = 1− λ
ε

�
v+

k
− v−

k

�
− τ
ε2
≥ 0.

Since v+
k
≥ 0 and v−

k
≤ 0, using the Gershgorin-type lemma for singular values, one gets

‖B1‖ ≤
�

1− λ
ε

�
v+

k
− v−

k

�
− τ
ε2

�
+
λ

ε
v+

k
− λ
ε

v−
k
= 1− τ

ε2
,

and ‖B1‖+α ≤ 1. Let 1 ∈ R2N be a column vector with all entries being 1. Then W = 1w T ,

where w = [w−N , · · · , wN ]
T . It is known that W is diagonalizable since W is a rank-one

matrix. Let Λ = X WX−1 be the diagonal matrix. One can verify that X can be written as

X = Y D1/2
w , where Dw = diag(w ) and Y is an orthogonal matrix. In fact, noting that

D1/2
w

W D−1/2
w

= D1/2
w

1w T D−1/2
w

= D1/2
w

11

T D1/2
w

is a diagonal matrix and similar to W , we can select an orthogonal matrix Y such that

D1/2
w

W D−1/2
w

= Y−1
ΛY, Y = Y T ,

as required.

Let DX = diag(X , · · · , X ) and DΛ = diag(Λ, · · · ,Λ) and define B̃1 = DX B1D−1
X

. Then,

DX B2D−1
X = DΛ/2 and

‖Bn‖ =




�

D−1
X

B̃1DX +
α

2
D−1

X
DΛDX

�n


=



D−1

X

�
B̃1 +

α

2
DΛ

�n
DX






≤


D−1

X



‖DX‖




�
B̃1 +

α

2
DΛ

�n


≤ κ(DX )

�
‖B̃1‖+

α

2
‖DΛ‖
�n

= κ(X )
�
‖B̃1‖+

α

2
‖Λ‖
�n

,
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where κ(X ) is the condition number of X . A direct calculation gives

B̃1 = DX B1D−1
X

=





Y D1/2
w

Y D1/2
w

. . .

Y D1/2
w









C −λ
ε

V−

λ

ε
V+

. . .
. . .

. . .
. . . −λ

ε
V−

λ

ε
V+ C





×





D−1/2
w Y −1

D−1/2
w Y −1

. . .

D−1/2
w

Y −1





=





Y

Y
. . .

Y









C −λ
ε

V−

λ

ε
V+

. . .
. . .

. . .
. . . −λ

ε
V−

λ

ε
V+ C









Y −1

Y −1

. . .

Y −1





=: DY B1D−1
Y ,

where we have used the fact that

D1/2
w AD−1/2

w = A for A= C , V±

since they are diagonal matrices. It is obvious that DY is an orthogonal matrix, which

implies ‖B̃1‖ = ‖B1‖. Therefore,

‖Bn‖ ≤ κ(X )
�
‖B1‖+

α

2
‖Λ‖
�n
≤ κ(X )(‖B1‖+α)n ≤ κ(X )

=


Y D1/2

w





D−1/2
w Y −1


≤
√√max(wk)

min(wk)
=: rw.

This shows

‖L−1‖® rwNt or σmin(L)¦
1

(rwNt)
.

3) For the maximum singular value, one obtains from the Gershgorin-type lemma that

‖L‖ ≤ 1+ ‖B‖ ≤ 1+ ‖B1‖+α‖B2‖ ≤ 2+
1

2
‖W‖® N1/2.

4) It is obvious that the sparsity s = O (N ). From the above estimates, we know that the

condition number κ = O (N1/2Nt).

5) The analysis of the time complexity can be carried out as that of the diffusive relax-

ation scheme.
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4.2. Discussion on the lower bound

It is an interesting–albeit not trivial-project to derive a lower bound not just for the

explicit scheme, but for all other schemes. The optimal quantum algorithm for the QLSP

in [8] is constructed by using the discrete adiabatic theorem or the discrete-time adiabatic

evolution, which is based on a sequence of T walk operators. Let UT (s) be the discrete

adiabatic evolution operator defined in [8] and let UA
T be the ideal adiabatic evolution

operator. To determine the complexity of the algorithm in terms of κ, the authors in [8]

show that 

UT − UA
T



≤ Cκ

T
,

which means that to obtain the solution to fixed error one can use T = O (κ) steps. If one

can prove that


UT − UA

T



≥ Cκ

T

for our specific problem, then the run time may be at least O (κ). Such a lower bound may

be difficult to establish even for the upper bound as observed in [8].

We remark that it may be relatively easy to give a lower bound for the Fourier approach

in [6]. The argument is described as follows. The Fourier approach is based on an approx-

imation of A−1 as a linear combination of unitaries e−iAti (LCU for short), where A is for the

QLSP: A|x〉= |b〉. According to [6, Lemma 12],

g(A) =
ip
2π

∫ yJ

0

dy

∫ zK

−zK

dz ze−z2/2e−iAyz

is β -close to A−1 for some yJ = Θ(κ
p

log(κ/β)) and some zK = Θ(
p

log(κ/β)), where β

is the error bound and f = Θ(g) means f = O (g) and g = O ( f ). The integral is then

approximated by the following finite sum:

h(A) =
ip
2π

J∑

j=0

∆y

K∑

k=−K

∆z zke−z2
k
/2e−iAy jzk ,

which is a linear combination of the unitaries e−iAti for t i ∈ R.

According to [6, Corollary 10], the algorithm for applying the LCU makes O (α) uses of

the oracles for the input models, where α is the L1 norm of the coefficients of the linear

combination. For the given linear combination, it is proved that

α= Θ(yJ ) = Θ
�
κ
Æ

log(κ/β)
�

,

which implies the lower bound

Qlower ¦ κ,

if we assume that the time complexity of the LCU algorithm is optimal.
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It remains to give a lower bound in the form of κ(L) ≥ C/εα for some α > 0. For the

lower bound of σmax(L), noting that LT L = tril(−B, I + BT B,−BT ), we obtain from the

Rayleigh representation theorem of eigenvalues of symmetric matrices that

λmax(L
T L) ≥ λmax(I + BT B)≥max

i
(I + BT B)ii = O (N )

or

σmax(L)≥ O (N1/2).

Next we discuss the upper bound of σmin(L). From the Rayleigh representation theo-

rem, one obtains

‖L−1‖2 ≥ λmax

�
I + BT B+ (B2)T B2 + · · ·+ (BNt−1)T BNt−1

�
.

Let λmax(B) be the largest eigenvalue of B with the corresponding eigenvector denoted

by ξ. Then,

‖L−1‖2 ≥ ξ
T (I + BT B + (B2)T B2 + · · ·+ (BNt−1)T BNt−1)ξ

ξTξ
=

Nt−1∑

k=0

λ2k
max(B).

We want to show that λmax(B)≥ 1, which implies

σmin(L)≤ 1/N
1/2
t ,

and hence

κ(L) ≥ (N Nt)
1/2 ≥ N1/2

ε
,

where the CFL condition in Theorem 4.1 has been used. However, we do not find a rigorous

proof of λmax(B) ≥ 1 although it was numerically verified. For example, when choosing

the Gaussian points and weights as

v = [− 0.9602898565,−0.7966664774,−0.5255324099,−0.1834346425,

0.1834346425,0.5255324099,0.7966664774,0.9602898565],

w = [0.1012285363,0.2223810345,0.3137066459,0.3626837834,

0.3626837834,0.3137066459,0.2223810345,0.1012285363],

and set

h= δε, τ =
hε2

h+ ε
,

we obtain λmax(B) = 1 for δ = 0.1 and ε = 0.01 for instance.
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5. Conclusions

We studied the time complexities of finite difference methods for solving the multiscale

transport equation in the setting of quantum computing. Our results show that the quan-

tum implementation of the classical Asymptotic-Preserving schemes, a popular multiscale

framework for multiscale problems [13], is equally important in quantum computing since

they allow the computational costs for quantum algorithms to be independent of the small

physical scaling parameters. This study also suggests that one should take full advantage

of state-of-the-art multiscale classical algorithms when designing quantum algorithms for

multiscale PDEs.
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