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Abstract. A modi�ed Verlet method which involves a kind of mid-point ru le is con-
structed and applied to the one-dimensional motion of elastic balls of �nite size, falling
under constant gravity in space and then under the chemical potential in the interface
region of phase separation within a two-liquid �lm. When app lied to the simulation
of two balls falling under constant gravity in space, the new method is found to be
computationally superior to the usual Verlet method and to Runge–Kutta methods, as it
allows a larger time step for comparable accuracy. The main purpose of this paper is to
develop an ef�cient numerical method to simulate balls in th e interface region of phase
separation within the two-liquid �lm, where the ball motion is coupled with two-phase
�ow. The two-phase �ow in the �lm is described via shallow wat er equations, using
an invariant �nite difference scheme that accurately resolves the interface region. A
larger time step in computing the ball motion, more comparable with the time step in
computing the two-phase �ow, is a signi�cant advantage. The computational ef�ciency
of the new method in the coupled problem is demonstrated for the case of four elastic
balls in the two-liquid �lm.

AMS subject classi�cations : 65L12, 65M06, 65P10
Key words : Verlet method, falling balls, �rst return map, phase separ ation, shallow water equa-
tions.

1. Introduction

The main purpose of this paper is to develop an ef�cient numerical method to simulate
the motion of elastic balls of �nite size in immiscible two-l iquid �lms. The phase separates
in immiscible �lms, and the balls are expected to align near t he phase separation inter-
face in a kind of self-organisation process related to problems of nanotechnology[ 8, 18] .
Since �lm phenomena are quite complex, the simulation in thi s paper is restricted to one
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dimension – i.e. the balls (that may collide) fall in a straig ht line to the bottom of the phase
separation potential in the two-phase �ow.

Falling ball problems are not easy to analyse. However, balls falling in space under
constant gravity have been studied with reference to ergodic theory [ 4] . In the case of
point masses moving in one dimension above a �xed �oor, when t he upper point masses
are lighter than the lower ones it has been proven mathematically that the system has some
non-vanishing Lyapunov exponents almost everywhere, and becomes chaotic[ 16,17] . For
two point masses, there is typical Kolmogorov–Arnold–Moser behaviour when the upper
mass is heavier than the lower one, where quasi-periodic andchaotic trajectories coexist in
the phase space[ 15] . Related numerical integration must be performed with high accuracy,
and lengthy simulations of falling balls have been undertaken using the symplectic Verlet
method.

The main dif�culty encountered in previous simulations of t he motion of elastic balls
of �nite size in immiscible two-liquid �lms was the signi�ca ntly smaller time step required
in the Verlet method than the time step permitted for the �ow c omputation by the CFL
(Courant-Friedrichs-Lewy) condition, for a given accuracy. This led the author to construct
the modi�ed Verlet method involving the second-order mid-p oint rule adopted in this paper
– i.e. to allow larger time steps for the simulation of the bal l motion, more compatible with
the time steps allowed in the invariant �nite difference sch eme used to solve the two-phase
shallow-water equations invoked [ 14] .

2. Two Balls Falling Under Constant Gravity and the Modi�ed Ver let Method
Involving the Second-Order Mid-Point Rule

In this Section, the modi�ed Verlet method involving the sec ond-order mid-point rule
is constructed and applied to the case of two elastic balls of�nite size falling vertically
under constant gravity above a �xed rigid horizontal �oor. T his new method is �rst used in
two simpler test problems – viz. the harmonic oscillator and the case of a single bouncing
ball. When applied to the two balls falling in space, the new method is then shown to be
more ef�cient than either the usual Verlet or various Runge-Kutta methods.

2.1. Mathematical model

The motion of two balls falling in one dimension under constant gravity above the �xed
�oor is governed by the system of equations

dzi

d t
= vi , (2.1)

dvi

d t
= f i

�
z1, z2

�
, i = 1,2. (2.2)

Here z denotes the vertical position of a ball above the horizontal �oor, v the corresponding
vertical velocity of the ball, t the time, f represents the acceleration, and the subscripts 1
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and 2 denote the lower and upper ball, respectively. The vertical acceleration consists of a
gravity term and an impact stress term – i.e.

f1
�
z1, z2

�
= � g + f1s

�
z1

�
=m1 � f12

�
z1, z2

�
=m1, (2.3)

f2
�
z1, z2

�
= � g + f12

�
z1, z2

�
=m2, (2.4)

where g denotes the gravitational acceleration, mi the respective ball mass(i = 1,2), f1s

the force attributable to the impact stress between the lower ball and the �oor, and f12 the
force of impact between the two balls.

Since it is assumed the balls are elastic, suitable impact stresses calculated using Hertz
theory [ 11] are

f1s = k �
�

x1
� 3

2 , x1 = max
�
R� z1, 0

�
, (2.5)

f12 = k �
�

x2
� 3

2 , x2 = max
�
R�

�
z2 � z1

�
=2,0

�
, (2.6)

where R is the common ball radius and k is the elastic (“spring") constant.
The corresponding Hamiltonian of the system is therefore

H =
X

i= 1,2

�
1

2
mi v

2
i + mi gzi + Eci,

�

, (2.7)

where the elastic collisional energy is

Eci =
2

5
k �

�
x i

� 5
2 , i = 1,2 . (2.8)

2.2. Modi�ed Verlet method involving second-order mid-point ru le

The usual Verlet method renders Eqs. (2.1) and (2.2) for eachball as

zn+ 1 = zn + � t � vn +
1

2
(� t )2 � f n , (2.9)

f n+ 1 = f
€

zn+ 1
Š

, (2.10)

vn+ 1 = vn + � t �
f n+ 1 + f n

2
, (2.11)

where � t is the time-step width, the superscript denotes the time step, and the subscript
denoting a particular ball has been omitted.

However, on introducing truncated Taylor series into the model, Eqs. (2.1) and (2.2)
become

dz

d t
+

� t

2

d2z

d t2
+

(� t )2

6

d3z

d t3
= v +

� t

2
f , (2.12)

dv

d t
+

� t

2

d2v

d t2 +
(� t )2

6

d3v

d t3 = f +
� t

2
f 0v +

(� t )2

4

€
f 00v2 + f 0f

Š
, (2.13)
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where

f 0v =
2X

j= 1

@f
�
z1, z2

�

@zj
vj , f 00v2 =

2X

i , j= 1

@2 f
�
z1, z2

�

@zi @zj
vi vj , f 0f =

2X

j= 1

@f
�
z1, z2

�

@zj
f j .

The �rst-order perturbed terms of the time derivative may be eliminated using the
equations themselves and the second-order perturbed termsof the time derivative repeat-
edly, yielding the system of differential equations

dz

d t
= v �

(� t )2

6

�
f 0v

�
, (2.14)

dv

d t
= f + (� t )2

�
1

12
f 00v2 +

1

12
f 0f

�

, (2.15)

which produces the modi�ed Verlet method involving the second-order mid-point rule as
follows.

On eliminating second-order perturbed terms, and replacing the trapezoidal rule used
in the velocity equation in the Verlet method with another fo rmula, one obtains

zn+ 1=2 = zn +
� t

2
� vn + � (� t )2 f (zn) , (2.16)

vn+ 1 = vn + � t � f
€

zn+ 1=2
Š

, (2.17)

where the improved Euler method corresponds to� = 0 and the mid-point method when
� = 1=4, where the value of the mid-point is (zn+ 1 + zn)=2. Further, the value at the mid-
point is given by the Taylor expansion of zn+ 1=2 up to second order if � = 1=8, under a
method designated here as the second-order mid-point rule.The corresponding approxi-
mate velocity equation is

dv

d t
= f + (� t )2

�

�
1

24
f 00v2 �

1

24
f 0f

�

. (2.18)

The detailed of derivation of (2.18) is shown in the Appendix .

The perturbed term is cancelled by the weighted average of the equations of the trape-
zoidal rule and the second-order mid-point rule, such that

vn+ 1
V = vn + � t �

f
€

zn + � t � vn + (� t )2 f (zn) =2
Š

+ f (zn)

2
, (2.19)

vn+ 1
T = vn + � t � f

‚

zn +
� t

2
vn +

(� t )2

8
f (zn)

Œ

, (2.20)

vn+ 1 =
vn+ 1

V + 2vn+ 1
T

3
. (2.21)
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The appropriate modi�ed equation of position for the new met hod, derived from (2.14)
and the weight of (2.21), is

dz

d t
= v +

(� t )2

12

�
f 0v

�
(2.22)

such that

zn+ 1 = zn + � t � vn +
(� t )2

4

‚

f

‚

zn + � t � vn +
(� t )2

2
f (zn)

Œ

+ f (zn)

Œ

. (2.23)

Averaging the corresponding equation in the Verlet method and this equation, using the
same weight as for the velocity equation, yields

zn+ 1 = zn + � t � vn +
(� t )2

3
f (zn) +

(� t )2

6
f

‚

zn + � t � vn +
(� t )2

2
f (zn)

Œ

= zn+� t � vn+
(� t )2

2
f (zn)+

(� t )2

6

‚

f

‚

zn + � t � vn+
(� t )2

2
f (zn)

Œ

� f (zn)

Œ

. (2.24)

Equations of (2.19)–(2.21) and (2.24) constitute the modi� ed Verlet method involving
the second-order mid-point rule, where one may note that the model equations of the
previous subsection are approximated by difference equations to third-order accuracy.

2.3. An harmonic oscillator

The stability of the modi�ed Verlet method involving the sec ond-order mid-point rule
can be demonstrated by application to an harmonic oscillator, which can be viewed as a
linearised model of one ball striking the �oor, where the ini tial height of the centre of the
ball is its radius and the elastic force of restitution is Hooke's law. Thus the ball is deformed
by gravity such that the position of the centre of the ball is lowered and then rebounds to
its initial height, and subsequently undergoes a continuous harmonic oscillation. Assuming
the angular velocity of the harmonic oscillation to be 1.0 radian sec� 1 say, the modi�ed
Verlet method involving the second-order mid-point rule in this case is

 
zn+ 1

vn+ 1

!

=

0

B
B
B
B
@

1 �
(� t )2

2
+

(� t )4

12
� t �

(� t )3

6

� � t +
(� t )3

6
1 �

(� t )2

2

1

C
C
C
C
A

 
zn

vn

!

. (2.25)

The eigenvalues of the coef�cient matrix are complex conjugates, with absolute valuep
1 � (� t )6=72. Thus the computed amplitude of the oscillation is less than the exact

amplitude, and accurate to sixth order in the time-step widt h.
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Figure 1: Phase p ortrait of a b ouncing ball: (A),(B) Verlet metho d; (C),(D) mo di�ed Verlet metho d

involving second-order mid-p oint rule.

2.4. Single bouncing ball

A single bouncing ball also demonstrates the relative advantage of the modi�ed Ver-
let method involving the second-order mid-point rule. Let u s consider a ball of radius
0.1 cm falling until it strikes the rigid �oor, where it becom es deformed but is again un-
deformed on returning to its initial height, and this repeat s endlessly. The gravitational
acceleration is 980 gm=sec2, the assumed elastic (“spring") constant of the Hertz theory is
107 gm=(cm1=2 � sec2), the assumed initial height of the centre of the ball is 0.2 cm, and
the time-step width adopted is 0.0003 sec. The resulting phase portrait obtained from the
usual Verlet method is shown in Fig. 1A, and Fig. 1B is an enlargement of a part of 1A.
The phase portrait obtained from the modi�ed Verlet method i nvolving the second-order
mid-point rule is presented in Fig. 1C, and Fig. 1D is an enlargement of Fig. 1C. Since the
total energy is constant, the phase portrait should be a single closed line, but there is a
large �uctuation of the phase portrait in Fig. 1B.

It is instructive to note that the approximate Hamiltonian u nder the Verlet method is

HV = Hexact+ (� t )2
�

�
1

12
f 0v2 �

1

24
f 2

�

, (2.26)

where Hexact is the exact Hamiltonian. On the other hand, the approximate Hamiltonian
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Figure 2: First return map of the upp er ball from the mo di�ed Verlet metho d involving second-order

mid-p oint rule. The lower ball mass is (A) 1.2, (B) 0.8, and the upp er ball mass is 1.0. The �rst

return map shows the upp er ball's p osition and velo city when the lower ball is in its lowest p osition after

colliding with the �o or.

under the second-order mid-point rule in the modi�ed Verlet method is

HT = Hexact+ (� t )2
�

1

24
f 0v2 +

1

48
f 2

�

, (2.27)

where the second-order terms of the Hamiltonian are cancelled out. The suppression of
the �uctuation in Fig. 1D is evidence for the improved accura cy under the modi�ed Verlet
method involving the second-order mid-point rule.

2.5. Two falling balls

Let us now proceed to simulate the one-dimensional motion of the two balls of �nite
size falling under gravity. After colliding with the �oor, t he lower ball either rebounds up-
ward and subsequently collides with the falling upper ball or it eventually falls down again
if the two balls do not collide. When the two balls do collide, the momentum exchange
returns the lower ball toward the �oor and sends the upper bal l upward, before that ball
falls again. The rhythm of the interaction is obviously complex, and depends upon the
relative masses of the two balls.

In the simulation, it is assumed that the initial positions o f the ball centres are 0.2 cm
and 0.5 cm from the �oor, respectively. The period of computa tion considered is 1000 sec,
the time step is 10� 4 sec, and the other parameters adopted are the same as in the calcula-
tion for the single bouncing ball described in the previous subsection. The �rst return map
proposed by Whelan et al. [ 15] represents the position and velocity of the upper ball when
the lower ball is at its lowest position after colliding with the �oor. The results from the
modi�ed Verlet method involving the seconf-order mid-poin t rule are presented in Fig. 2,
where the mass of the upper ball is 1.0 gm, and that of the lower ball is either 1.2 gm (in
Fig. 2A) or 0.8 gm (in Fig. 2B).

The behaviour is chaotic when the upper ball is lighter than the lower ball, but there is
quasi-periodicity when the upper ball is heavier, in agreement with theory [ 15,16] .

Results obtained using other methods are shown in Fig. 3, forthe case where the
mass of the upper ball is 1.0 gm and that of the lower ball is 0.8gm. Figs. 3A and 3B
present results from the explicit second order symplectic Verlet method, for the time-step
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width 10 � 4 sec in Fig. 3A and 10� 5 sec in Fig. 3B, respectively. It is notable that Fig. 3A is
qualitatively different from Fig. 2, which was obtained usi ng the modi�ed Verlet method
involving the second-order mid-point rule. Figs. 3C and 3D show the results obtained
using a Runge–Kutta method with the time-step width 10� 4 sec. Fig. 3C shows results
from the fourth order 1 =6 formula and 3D from the third order Kutta formula that are
called RK41 and RK32, respectively[ 1] . The number of function evaluations per time step
is four for the 1=6 formula and three for the Kutta formula, whereas the number of function
evaluations per time step in the modi�ed Verlet method invol ving the second-order mid-
point rule is three. Fig. 3D is obviously very different from the others. Fig. 3E presents the
result from the symmetric and symplectic implicit mid-poin t rule with the same time-step
width 10 � 4 sec, but it requires evaluation of the right-hand side function of the differential
equation at every inner iteration. The convergence criterion value demanded for the inner
iteration is 10 � 14, and approximately six iterations are needed during a collision. With the
given time-step width and the number of function evaluation s involved, the modi�ed Verlet
method involving the second-order mid-point rule is evidently computationally superior.

Fig. 4 presents the intermittency of the difference of velocity between the Verlet method
and the second-order mid-point rule, over the time interval 500 sec to 501 sec. During free
fall, where the velocity is a linear function of time and corr espondingly the position is a
square function of time, the results of both second-order methods are the same. However,
when the lower ball collides with the �oor, or when the upper b all collides with the lower
one, the results from the two methods differ. During free fal l, the results from the usual
Verlet method may be used to correct the results from the second-order mid-point rule
when a collision is detected.

3. Balls in the Interface Region of Phase Separation in a Two- Liquid Film

The modi�ed Verlet method involving the second-order mid-p oint rule is now applied
to the problem of colliding balls in the two-liquid �lm. The t wo-liquid �lm is formed in a
�at horizontal reservoir, where the ends of the liquid �lm ar e in contact with the walls of
the reservoir. The top of the �lm is a free surface, and it is assumed that the phases have
separated in the two-liquid �lm. Furthermore, a shallow wat er approximation is adopted
for the �lm. Balls are submerged in the liquid �lm, and are ali gned on a line passing trans-
versely across the interface region of phase separation. The balls move horizontally due to
the force arising from the chemical potential difference between the balls and the liquid,
and tend to fall to the bottom of the potential of the coupled s ystem. When one ball col-
lides with another, it is assumed that they interact elastically as before. The ball movement
stirs the liquid in the �lm through the consequent change in t he chemical potential.

3.1. Two-phase shallow water equations

For the two-phase �ow in the �lm, a suitable two-�uid model in volves two volume
fractions and two velocities for the major and minor phases,and a common pressure[ 5,6] .
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Figure 3: First return map when the masses

of the lower and upp er balls are 0.8 and 1.0,

resp ectively. The time-step width is 10� 4

for (A) Verlet metho d, the time-step width

10� 5
for the Verlet metho d in (B), (C) 4th-

order Runge�Kutta metho d and (D) 3rd-order

Runge�Kutta metho d, (E) the implicit mid-

p oint metho d.
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Figure 4: Di�erence b etween the upp er ball ve-

lo cities obtained using the usual Verlet metho d

and the second-order mid-p oint rule.

In a shallow water approximation, the relevant equations are [ 14]

@
�
� dh

�

@t
+

@
�
� dhud

�

@x
= 0 , (3.1)

@
�
� ch

�

@t
+

@
�
� chuc

�

@x
= 0 , (3.2)

@ud

@t
+ ud

@ud

@x
= �

1

� d

@
�
� mgh

�

@x
, (3.3)

@uc

@t
+ uc

@uc

@x
= �

1

� c

@
�
� mgh

�

@x
, (3.4)

where � d + � c = 1 . (3.5)
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Here x denotes the horizontal coordinate and t the time, h the surface height, � the volume
fractions and u the horizontal velocities where the subscript d denotes the minor phase and
c the major phase, g is the gravitational acceleration, and � m = � d � d + � c� c is the density
of the mixture. The unknowns are the surface height, the two volume fractions, and the
two velocities.

The equation for the surface height is derived by adding (3.1), (3.2), and (3.5)

@h

@t
+

@
�
� dhud + � chuc

�

@x
= 0. (3.6)

The volume fractions are then determined from (3.1) and (3.2 ), and the equation (3.6)
for the surface height.

3.2. Modelling the phenomena in the two-liquid �lm

The ball motion in the two-liquid �lm is governed by three int eractions – viz. ball–
ball interaction, liquid–liquid interaction, and liquid– ball interaction. For the ball–ball
interaction, once again elastic collisions are assumed; for the liquid–liquid interaction, the
Ginzburg–Landau model for phase separation is adopted; andfor the liquid–ball interac-
tion, a phenomenological model proposed in polymer scienceis used.

The Ginzburg–Landau model de�nes the Gibbs free energy of the phase separation[ 2] ,
where the driving forces are given by

fd = � � d
@ �

@x
, fc = � c

@ �

@x
, (3.7)

� = � a + b 3 � 

@2 

@x2
,  = � d � � c. (3.8)

Here f represents the driving forces of the phase separation (with subscripts d and c
denoting the respective minor and major phases as before),� is the chemical potential,  
is the order parameter that distinguishes the phase state bythe difference of the volume
fractions for the phase separation, andf a, b, 
 g are the constants in the Ginzburg–Landau
model that depend on the relevant phenomena.

Adding the driving forces of the phase separation yields thevelocity equations in the
two-phase shallow water approximation

@uk

@t
+ uk

@uk

@x
= �

1

� k

@

@x

�
� mgh� �

�
, k = d, c , (3.9)

where k is either d or c and the sign of � is either + for d or � for c.
The phenomenological model adopted for the free energyFcpl of the coupled system is

(cf. Peng et al. [ 9] )

Fcpl =

Z

d x
¦

h( x) 4� R2 V
€

x � rp

Š�
 ( x) �  s

� 2©
, (3.10)

V
€

x � rp

Š
= V0 exp

€
�

�
� x � rp

�
� =r0

Š
,
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where rp denotes the position of the centre of the ball,  s the order parameter of the
surface of the balls, andV0 and r0 are constants. When there are two or more more balls
in the two-liquid �lm, their free energies are superposed. T he chemical potential of the
coupled system is de�ned by

� cpl = 8� R2V
€

x � rp

Š�
 �  s

�
, (3.11)

and added to the chemical potential term of the two-phase shallow water equations.

The velocity equation of a ball of velocity v and massm in the interface region of phase
separation is thus

dv

d t
= � M

@Fcpl

@rp
+ fcol l ision=m , (3.12)

where M denotes its mobility. When the i th ball collides with the (i + 1)th ball, the relevant
collision term is

fcol l ision = k �
€

r i ,i+ 1

Š3
2 , (3.13)

r i ,i+ 1 = max
€

R�
€

rp,i+ 1 � rp,i

Š
=2,0

Š
, (3.14)

where rp,i is the position of the centre of the i -th ball and the balls are numbered in
ascending order from left to right.

3.3. Numerical methods

The modi�ed Verlet method involving the second-order mid-p oint rule is used in (3.12)
to simulate the ball motion in the two-liquid �lm, using a thi rd-order spline interpolation
in the �rst term on the right-hand side to evaluate the integr al representing Fcpl given in
Eq. (3.10).

For the two-phase shallow-water equations, an invariant �n ite difference scheme based
on the theory of the transformation group and developed by Russian researchers quite ac-
curately resolves the interface region of phase separation[ 14] . The differential equations
of mathematical physics do not alter in form under point tran sformations (such as the
Galilean or similarity transformations), and �nite differ ence schemes can be de�ned ac-
cordingly – i.e. such that the �rst differential approximat ion of the �nite difference scheme
on the discrete points in space and time preserves this property under point transfor-
mations [ 10, 12, 13] . The �rst differential approximation in the �nite differen ce scheme
of [ 10] , where it is also called the modi�ed equation [ 7] , is a partial differential equation
obtained by expanding in Taylor series and neglecting higher order terms. Our scheme
here is as follows:
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(� h)n+ 1
i � (� h)n

i

� t
+

(� hu)n
i+ 1 � (� hu)n

i � 1

2� x

=
� t

2

�
un

i+ 1=2un
i+ 1=2

€
(� h)n

i+ 1 � (� h)n
i

Š
� un

i � 1=2un
i � 1=2

€
(� h)n

i � (� h)n
i � 1

Š�
=� x2

+ � t
�

un
i+ 1=2 (� h)n

i+ 1=2
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Here � t is the time-step size, � x is the width of the x-directional mesh, the subscript i
denotes the x-directional mesh number, n the time step number, and um represents the
mass-weighted velocity of the mixture – i.e. such that � mum = � d � dud + � c� cuc. The
subscriptsd and c have now been omitted, since the �nite difference scheme for the major
phase is the same as that for the minor phase. The use of truncated Taylor series expansions
produces the �rst differential approximation, where �rst- order terms in � t and � x do not
appear. The scheme accuracy is second order in time and second order in space[ 14] .

A non-conservative form for the velocity equation is used, although the conservative
form is usually chosen. It is necessary to use the conservative form for the computa-
tion of shock waves, but shock waves do not play an important role in the problem dis-
cussed here. However, there are some phenomenological terms in the mathematical model
adopted above – and experience with nuclear code development has revealed that a non-
conservative form may be preferable, as the relevant conservative form conserves non-
physical errors arising from phenomenological terms[ 3] .
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3.4. Preliminary cases: kink solution and two balls in the po tential of a kink
solution

Prior to the simulation balls in the two-phase �ow, two preli minary uncoupled prob-
lems were considered. The �rst was a steady state kink solution for two-phase �ow in the
�lm, and the second was for two balls in the potential of a kink solution.

The Euler–Lagrange equation of the Ginzburg–Landau model has an analytic solution
called a kink solution, where a one-dimensional two-phase �ow is stationary and attains a
ground state in the far �eld – viz.

 ( x) =  e tanh
�

x=
p

2�
�

, (3.17)

where  e =
p

a=b represents the ground state and� =
p


= a is the order of the interface
region thickness [ 2] . For the numerical computation of this kink solution, a phen omeno-
logical lateral viscosity term was added to the equation of velocity – viz.

�
@2uk

@x2 ' �
uk,i+ 1 � 2uk.i + uk,i � 1

� x2 , k = d, c

where � is the phenomenological viscosity coef�cient. The introduction of this viscosity
term can ensure that the velocity due to the large force due tothe phase separation in the
interface region decays, such that the numerical solution is stationary.

A steady state was computed from a perturbed kink solution, for the following pa-
rameters. The liquid �lm length was 50 cm and initial height 1 .0 cm, the liquid den-
sity 1.0 gm=cm3 and viscosity 0.01 cm2=sec for the respective phases, and the gravita-
tional acceleration 980 cm=sec2. The initial velocity of the �ow in the �lm was zero, and
the constants in the Ginzburg–Landau model were 1.0 gm=(cm� sec2) for a and b, and
1.0 gm � cm=sec2 for 
 . The initial distribution of the order parameter was given b y the
kink solution of the Ginzburg–Landau model. A perturbation of less than 0.0001 was ran-
domly added to the volume fractions of the kink solution, and the space mesh size was
0.1 cm. The origin of the coordinate system centre was taken to be at the centre of the
interface region at the centre of the �lm, the interface regi on width approximately 6 cm,
and the order parameter to be zero at the origin. The boundary conditions assumed at
the end of the �lm were Neumann zero for the volume fractions o f the two phases and
the surface height, and Dirichlet zero for the velocities. For the time-step width 0.001 sec,
the perturbation decayed slowly in the small �uid motion and the calculation converged
to the kink solution. The computed steady state of the liquid �lm for the x-coordinate
between � 10 cm and 10 cm is shown in Fig. 5. (When the time-step width was 0.01 sec,
the computation diverged.)

The second problem involved two balls placed symmetricallyabout the centre of the
potential of the kink solution. This is similar to the bounci ng ball problem except for the
included potential if symmetry is maintained, where each ball moves toward the centre
of the interface region under the chemical potential, the point at which they collide. (The
balls are deformed on impact and then move back to their initial positions, before resuming
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Figure 5: Steady state of the liquid �lm, from a p erturb ed kink solution.

their former motion toward the centre.) The radius of each ball was taken to be 0.1 cm,
their mass 1.0 gm and the elastic (“spring") constant 107 gm=(cm1=2sec2). The assumed
initial positions of the balls were � 0.2 cm, within the interface region of the kink solution.
The phase portrait obtained over every 100 steps is shown in Figs. 6A, 6B. The time-
step width in Fig. 6A was 0.0001 sec, and 0.0008 sec in Fig. 6B.Since the total energy
of the balls is constant, the phase portrait should be a single closed line, but it becomes
broadened in Fig. 6B. The maximum position of the ball at the right during two collisions,
which we call the peak and should be constant, is shown in Fig.6C. It is seen that the peak
for the time-step width 0.0001 sec does remain approximately constant, with a maximum
relative error to the initial position � 4.31 � 10� 5. For the time-step widths 0.00055 sec
and 0.0008 sec, the peaks are 0.194 cm and 0.173 cm, respectively. Fig. 6D shows the
phase portrait of a single ball starting from x = � 0.2 cm until 500 sec, with the time-step
width 0.0008 sec. The decay is negligible in Fig. 6D, meaningthat the decay originates
from the calculation of collisions. The greater decay of thepeak for a larger time-step may
be expected qualitatively, on recalling the form for the absolute value of the eigenvalues in
Section 2.3.

As foreshadowed, it is the computation of the ball motion that places the main restric-
tion on the time-step in the coupled problem.

3.5. Balls in the interface region of phase separation in a li quid �lm

Let us now turn to the simulation of four balls in the interfac e region of a phase-
separated �lm. The liquid �lms are presumed uniform from the bottom to the surface in
the shallow water approximation, so the force applied to the balls through the chemical
potential is horizontal. There is no vertical gravitationa l force on the balls in the liquid �lm
if the densities of the liquid and the balls are equal, so the balls only move horizontally.
The effect by which the balls exclude the �uid is ignored.

When the order parameter of the surface of the balls is equal to that of the centre of
the interface region and the initial positions of the balls are symmetric about the centre,
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Figure 6: Phase p ortrait of two balls in the p otential of the kink solution, using the mo di�ed Verlet

metho d involving second-order mid-p oint rule: (A) with time-step width 0.0001; (B) with time-step

width 0.0008; (C) at the p eak p osition of the right ball; and (D) the phase p ortrait of a single ball for

time-step width of 0.0008.

the balls fall symmetrically toward the centre under the chemical potential. The motion
on either side of the centre resembles the case of the two balls falling under constant
gravity discussed in Section 2.5, if the symmetry is maintained. Each inner falling ball now
collides elastically with the other at the centre, and then moves outward before colliding
with the respective outer falling ball or falls again if that collision does not occur. When an
inner and outer ball collide, their momentum exchange sends the inner ball back toward
the centre and the outer ball moves away, until it again falls toward the centre under the
chemical potential. Furthermore, the liquid in the �lm is st irred by the motion of the balls
due to the chemical potential. A sketch of the geometry of theballs in the interface region
is illustrated in Fig. 7.

The computational methods for both the ball motion and the tw o-phase �ow are ex-
plicit, where values at the n + 1 � th time step are computed from values of the n � th
step and the computation is combined at the n � th step. The assumed properties of the
balls and the speci�cation of the two-phase �ow in the liquid �lm was the same as in the
previous uncoupled case. The elastic (“spring") constant of the Hertz theory assumed was
107 gm=(cm1=2 � sec2), the initial positions of the ball centres were � 0.5, � 0.2, 0.2 and
0.5 cm, the constant V0 in the model of the coupled free energy 0.01 gm=(cm3 � sec2), the
constant R0 0.5 cm, and the ball mobility 10 5 gm� 1. The order parameter of the ball sur-
face was zero, the computation time 50 sec, and the time-stepwidth 1.0 � 5 sec (a smaller
time-step for the coupled system than for uncoupled cases).Fig. 8A shows the �rst return
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Figure 7: Sketch of the geometry of the balls in the interface region.
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Figure 8: Falling balls in the interface region

of phase separation in the �lm of length 50.

(A) �rst return map of the outer fourth ball

when the two inner balls collide and the centre

of the third ball is closest to the origin; (B)

p ositions of the centres of the third (lower)

and fourth (upp er) ball; and (C) the variation

of the order parameter from the initial value at

the p oint 0.3.

map of the outer fourth ball when the two inner balls collide a nd the centre of the third
ball is closest to the origin. Fig. 8B portrays the positionsof the centres of the third and
fourth balls in the right half of the �lm during the time inter val 40 � 50 sec, and of course
the movement of the �rst and second ball in the left half is sym metric. Fig. 8C presents the
variation of the order parameter from the initial value x = 0.3 cm during the time interval
40 � 50 sec. The numerical method evidently resolved the small variation of the order
parameter caused by the ball motion.

The �rst return map depends sensitively on the chemical potential and the dimension
of the �lm. For example, if the length of the �lm is 50.1 cm rath er than 50 cm, a quasi-
periodic �rst return map is obtained, as shown in Fig. 9A. Fig . 9B is an enlargement of
the upper right part of Fig. 9A. The other parts of Fig. 9A are also elliptic, but no elliptic
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Figure 9: (A) First return map when the length of the �lm is 50.1; and (B) enlargement of the upp er

right part of (A).

�gures appear in Fig. 8A. A survey of the �rst return map remai ns an issue for further study.
And the high sensibility on the parameters of the phenomena suggests the possibility and
dif�culty to control balls for technological purposes.

4. Conclusion

The modi�ed Verlet method involving the second-order mid-p oint rule is more ef�cient
in the simulation of falling balls than numerical integrato rs previously used. In particu-
lar, the motion of balls under the chemical potential within the interface region of phase
separation in a two-liquid �lm was accurately and ef�cientl y simulated by the modi�ed
Verlet method involving the second-order mid-point rule, w hen combined with an invari-
ant �nite difference scheme for the two-phase shallow water equations. However, a more
careful consideration of the �rst return map remains an issue for further study.

A. Appendix

The derivation of equation (2.18) from (2.16) and (2.17) in S ection 2.2 is an elimi-
nation process involving time differential. The velocity equation using the second-order
mid-point rule is

vn+ 1 � vn

� t
= f

�

zn +
� t

2
� vn + � (� t )2 f (zn)

�

. (A.1)

Ignoring higher order terms, the Taylor expansion of (A.1) becomes
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+
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where the summations are represented as in Section 2.2.
The second-order and third-order time derivatives on the left-hand side of (A.2) are

eliminated by invoking differentiated forms of the equatio n, to yield
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Similarly, equation (2.16) becomes
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Substituting (A.3) into (A.4) and ignoring higher order ter ms, (A.4) becomes
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Applying (A.5) to the calculation of the second term in the le ft-hand side of (A.3) and
ignoring the higher order terms, the result is
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If � is equal to 1=8, (A.6) becomes
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