Memory-Reduction Method for Pricing American-Style Options under Exponential Lévy Processes

Raymond H. Chan* and Tao Wu

Department of Mathematics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China.

Received 2 March 2010; Accepted (in revised version) 12 April 2010

Available online 26 October 2010

Abstract. This paper concerns the Monte Carlo method in pricing American-style options under the general class of exponential Lévy models. Traditionally, one must store all the intermediate asset prices so that they can be used for the backward pricing in the least squares algorithm. Therefore the storage requirement grows like $O(mn)$, where m is the number of time steps and n is the number of simulated paths. In this paper, we propose a simulation method where the storage requirement is only $O(m + n)$. The total computational cost is less than twice that of the traditional method. For machines with limited memory, one can now enlarge m and n to improve the accuracy in pricing the options. In numerical experiments, we illustrate the efficiency and accuracy of our method by pricing American options where the log-prices of the underlying assets follow typical Lévy processes such as Brownian motion, lognormal jump-diffusion process, and variance gamma process.

Key words: American options, Monte Carlo simulation, memory reduction, exponential Lévy processes.

1. Introduction

During the past decade, the exponential Lévy models have been popularized in financial modeling among researchers as well as practitioners, see e.g. [11]. The classical Black-Scholes model [3] presumes that the price of the underlying asset follows a geometric Brownian motion with constant volatility. However, the empirical observation in real financial trading reveals that the implied volatility surface often displays a so-called volatility smile [18]. Moreover, the distribution of the asset return, assumed to be Gaussian in the Black-Scholes model, exhibits a heavy tail [10], i.e. large moves of the market

*Corresponding author. Email addresses: rchan@math.cuhk.edu.hk (R. H. Chan), twu@math.cuhk.edu.hk (T. Wu)
Memory-reduction method for pricing American-style options

have decent probabilities to occur. As remedies for Black-Scholes, the exponential Lévy models contain Lévy jumps in addition to the classical diffusion, so that the phenomena of the volatility smiles and the heavy tails can be generically accounted for [11]. We remark that the exponential Lévy model is a very general class of models. It includes well-known examples such as the Black-Scholes model [3], lognormal jump-diffusion model [19], double-exponential jump-diffusion model [15], variance gamma model [17], normal inverse Gaussian model [2], CGMY model [5], etc. We refer to the classical reference [11] for further background in financial modeling by exponential Lévy processes. The present paper concerns the use of Monte Carlo simulation in pricing American-style options under the general framework of exponential Lévy models.

It is well known, see e.g. [13], that with the no-arbitrage principle the option price is given by the discounted expected payoff under certain risk-neutral measure. This leads to option pricing by the Monte Carlo method, for which the first application was made by Boyle [4] in 1977. Since then, Monte Carlo method has been a popular tool in pricing financial derivatives [13]. Yet, Monte Carlo method is known to have difficulties in handling American-style options with early exercise feature. In 2001 Longstaff and Schwartz [16] proposed a practical algorithm, named least squares method (LSM), to price American options. Their method is based on a backward-in-time induction, where at each time step the continuation value of the option is estimated by a least squares approximation.

However, one drawback of LSM is that, in order to compute the intermediate exercise prices at all time steps, it requires the storage of all asset prices at all time steps for all simulated paths. Thus the total storage requirement grows like $O(mn)$ where m is the number of time steps and n is the number of simulated paths. The plain Monte Carlo method, referred as the full-storage method in this paper, is therefore computationally inefficient since the accuracy of the simulation is severely limited by the storage requirement.

This storage problem can be alleviated by “bridge methods” such as the Brownian bridge [9], the inverse Gaussian bridge [22], and the gamma bridge [23] — where the memory requirement can be reduced to $O(n \log m)$. Nevertheless, one drawback is that a specific bridge method can only work on the corresponding model that the price of the underlying asset follows. Thus the Brownian bridge is suitable for Brownian motion, the gamma bridge for the variance gamma process, and so on. That is to say, all bridge methods are model-dependent, which limits their use in applications.

In this paper, we develop a memory-reduction method, which does not require storing of all intermediate asset prices. The storage is significantly reduced to $O(m + n)$. Coupled with the least squares method proposed in [16], our memory-reduction method is applicable to the general class of exponential Lévy processes. The main idea of our method is to first generate the price process forward until the expiration time, and to store only the seeds of the random number sequences at each time step. When computing the option prices backwardly, we recompute the just-in-time asset prices using the corresponding seeds. Since the prices are recomputed exactly, the memory-reduction method gives the same result as the full-memory method. The additional computational cost is the cost of regenerating the random numbers corresponding to the asset prices. The total computational cost is therefore always less than twice that of the full-storage method.
The remainder of the paper is organized as follows. Section 2 reviews the exponential Lévy processes as well as the full-storage method. Section 3 gives the background of random number generators and the concept of seeds. Section 4 introduces our memory-reduction method. In Section 5, we show how the memory-reduction method is applied to specific models — viz. the Black-Scholes model, Merton’s jump-diffusion model and the variance gamma model. Numerical results are provided there to show the efficiency and accuracy of our method, by comparing it with methods from other well-known approaches. Concluding remarks are drawn in Section 6.

2. Exponential Lévy Processes and the Full-Storage Method

Let the risk-neutral price dynamics be modeled by the exponential Lévy process
\[S_t = S_0 \exp(rt + L_t), \]
with the risk-free rate \(r \) and a Lévy process \(L_t \). A Lévy process \(L_t \) is a stochastic process with stationary independent increments, continuous in probability, having sample paths that are right-continuous with left limits (“cadlag”), and satisfying \(L_0 = 0 \). We note that the increments, \(L_s - L_t \) for any \(s > t \), are independent if the increments \(L_s - L_t \) and \(L_u - L_v \) are independent random variables whenever the two time intervals \([t, s]\) and \([v, u]\) do not overlap. The increments are stationary if the distribution of any increment \(L_s - L_t \) only depends on \(s - t \); and therefore increments with equally long time intervals are identically distributed.

We first review the Monte Carlo simulation for computing American-style options. First the time horizon is discretized into \(m \) time steps with equal length \(\Delta t := (T - t_0)/m \) as \(t_0 < t_1 < ... < t_m = T \), or \(t_j = t_0 + j\Delta t \), where \(t_0 \) is the current time and \(T \) is the expiration date of the option. Let \(L_{i,j} \) denote the realization of \(L_t \) on the \(i \)-th path at time \(t_j \). They are computed by adding the increment \(\Delta L_{i,j} := L_{i,j} - L_{i,j-1} \) to \(L_{i,j-1} \) recursively at each time step. Thus the whole path simulation process is to simulate the random numbers that give \(\Delta L_{i,j} \). We will denote by \(\Sigma_{i,j} = \{\epsilon_{i,j,k}\}_{k=1}^{\eta_{i,j}} \) the ordered set of \([0,1]\) uniform random numbers used in generating \(\Delta L_{i,j} \). Here \(\eta_{i,j} \) is the number of random numbers required to generate \(\Delta L_{i,j} \). It is different for different process. The outline for a general of path simulation procedure is given below:

\begin{algorithm}
For-loop: \(i = 1, 2, ..., n \)
Set \(L_{i,0} \leftarrow 0 \)
End for-loop

\begin{enumerate}
 \item Get the increment \(\Delta L_{i,j} \) by generating \(\Sigma_{i,j} \)
 \item \(L_{i,j} \leftarrow L_{i,j-1} + \Delta L_{i,j} \)
 \item \(S_{i,j} \leftarrow S_0 \exp(rj\Delta t + L_{i,j}) \)
\end{enumerate}

End for-loop
\end{algorithm}
Algorithm 2.1 simulates the paths and then stores all intermediate asset prices $S_{i,j}$ for later computation of the option prices, hence the storage requirement grows like $O(mn)$. We call this the full-storage method. Once we have all the intermediate asset prices $S_{i,j}$, we can price American-style options using the least square method (LSM) suggested by [16].

Let us recall it here. At the final exercise date T, the optimal exercise strategy for an American option is to exercise it if it is in the money. This can be done as the terminal asset prices $S_{i,m}$ are available for each path i. However, prior to T the optimal strategy is to compare the immediate exercise value with the expected cash flows from continuing, and then exercise if immediate exercise is more valuable. In the full-storage method, the intermediate asset prices $S_{i,j}$ are available for each path i and at each time step j. Thus the key to optimally exercising an American option is to identify the conditional expected value of continuation. In [16], the cross-sectional information in the simulated paths is used to identify the conditional expectation function. This is done by regressing the cash flows from continuation on a set of basis functions depending on the current asset prices $S_{i,j}$. The fitted function from this regression is an efficient unbiased estimate of the conditional expectation functions, from which one can estimate an optimal stopping rule for the option.

Numerical illustration of LSM for pricing American put options under the Black-Scholes framework can be found for instance in [16]. The computational complexity of the full-storage method is $O(mn)$.

3. Random Number Generators

In Step 1 of Algorithm 2.1, in order to get $\Delta L_{i,j}$ we need to generate a set of $[0,1]$ uniform random numbers $\{\Sigma_{i,j}\}$ for each time step j on each path i. Most programming softwares already have built-in functions to generate $[0,1]$ uniform random numbers. In MATLAB, we can initialize the pseudorandom number generator with seed d by the command `rand('seed',d)`, and then generate a pseudorandom sequence $\{\epsilon_k\}$ by repeatedly using the command `rand`. In MATLAB, $\{\epsilon_k\}$ is generated by a simple multiplicative congruential generator [20, Chapter 9]

$$d_0 = d, \quad d_k = ad_{k-1} + c \mod M, \quad \text{for } k \geq 1; \quad \epsilon_k \equiv d_k/M.$$ (3.1)

The parameters in (3.1) are chosen as $a = 16807$, $c = 0$, $M = 2^{31} - 1$, due to Park and Miller [21].

Thus a pseudorandom sequence is actually not random but deterministic, in the sense that it is generated according to some formula and hence can be regenerated exactly if the seed d_0 is known. For example, the MATLAB commands
will output different \(\varepsilon \) if the seed \(d \) is changing every time, but output the same \(\varepsilon \) if \(d \) is fixed. By extracting and remembering a proper seed, we can regenerate part of a pseudorandom sequence as we desire. More specifically, suppose we have already generated a sequence \(\{\varepsilon_k\}_{k=1}^p \), and then we want to regenerate only \(\{\varepsilon_k\}_{k=q}^p \), i.e. the part of the sequence beginning at \(\varepsilon_q \). All we need is to extract the seed after generating \(\varepsilon_{q-1} \). The seed-extracting command in MATLAB is \texttt{rand('seed')}. Thus given the sequence \(\{\varepsilon_k\}_{k=1}^p \) generated by

\[
\text{rand}('seed',d) ;
\]

\[
e = \text{rand} ;
\]

we can regenerate \(\{\varepsilon_k\}_{k=q}^p \) by

\[
\text{randn} \rightarrow \varepsilon_1 \ldots \rightarrow \varepsilon_{q-1} \rightarrow \text{c-randn('seed')} \rightarrow \text{extract seed} \rightarrow \varepsilon_q \ldots \rightarrow \varepsilon_p ,
\]

Some computer languages only provide \([0,1]\) uniform random numbers. When we simulate Lévy processes, we will also need to generate non-uniform random variables such as the standard normal random variables, Poisson random variables, and the gamma random variables. Various kinds of methods, say the inverse transform method and the acceptance-rejection method, can be used to obtain non-uniform random variables based on \([0,1]\) uniform random numbers. For standard normal random numbers, the most commonly used method is the Box-Muller transformation [12, pp. 235]. For Poisson random variables, the inverse transform method is a standard method [13, pp. 128]. For completeness, we provide the Best’s generator for the gamma random variables in the Appendix — cf. [12, pp. 410 and pp. 420]. We will be using these methods to generate the needed random variables. In the following, we will use \(Z \sim \mathcal{N}(0,1) \) and \(\varepsilon \sim \mathcal{U}[0,1] \) to denote random numbers \(Z \) and \(\varepsilon \) distributed as standard normal and \([0,1]\) uniform respectively.

4. The Memory-Reduction Method

In this Section, we present our memory-reduction method which does not require one to store the intermediate asset prices \(\{S_{i,j}\}_{i,j=1}^{n,m} \) when computing the option prices. In this method, each increment \(\Delta L_{i,j} \) is generated twice without being stored while the corresponding intermediate asset price \(S_{i,j} \) is generated only once in the backward pricing of the option.

As in the full-storage method, we compute \(L_{i,j} = L_{i,j-1} + \Delta L_{i,j} \) by using the increments \(\Delta L_{i,j} \). But in our memory-reduction method, we use a different way to generate the set of random numbers \(\Sigma_{i,j} \) to obtain \(\Delta L_{i,j} \)—we generate them time-wise. More precisely, we
obtain the increments $\Delta L_{i,1}$ by generating the random numbers in $\Sigma_{i,1}$ on each path i, $i = 1, ..., n,$ for the time step $j = 1$ first. Then we obtain $\Delta L_{i,2}$ by generating $\Sigma_{i,2}$ on all paths for $j = 2$, etc. For each time step j, at the last path, i.e. path n, we extract and save the current seed d_j for later use. Given an arbitrary seed d_1, the procedures can be illustrated as follows (cf. Phase 2 in the following Algorithm 4.1):

\[
\text{set seed } d_1 \rightarrow \Delta L_{1,1}(\Sigma_{1,1}) \rightarrow \Delta L_{2,1}(\Sigma_{2,1}) \rightarrow \ldots \rightarrow \Delta L_{n,1}(\Sigma_{n,1}) \rightarrow \\
\text{extract seed } d_2 \rightarrow \Delta L_{1,2}(\Sigma_{1,2}) \rightarrow \Delta L_{2,2}(\Sigma_{2,2}) \rightarrow \ldots \rightarrow \Delta L_{n,2}(\Sigma_{n,2}) \rightarrow \\
\text{extract seed } d_3 \rightarrow \ldots \\
\text{extract seed } d_m \rightarrow \Delta L_{1,m}(\Sigma_{1,m}) \rightarrow \Delta L_{2,m}(\Sigma_{2,m}) \rightarrow \ldots \rightarrow \Delta L_{n,m}(\Sigma_{n,m})
\]

Note that we need an m-vector to hold $\{d_j\}_{j=1}^m$ and an n-vector to hold $\{L_{i,j}\}_{i=1}^n$. That n-vector can be re-used for every time step j.

When computing the option price we move backward in time, and compute on each path i the corresponding asset prices $S_{i,j} = S_0 \exp(r j \Delta t + L_{i,j})$ at each time step j. This requires $L_{i,j}$. Given $L_{i,j+1}$, to obtain $L_{i,j}$, we only need to regenerate $\Delta L_{i,j+1}$. This can be done by reproducing the random number sequence in $\Sigma_{i,j+1}$ using the seed d_{j+1}, i.e.

\[
\text{set seed } d_j \rightarrow \Delta L_{1,j+1}(\Sigma_{1,j+1}) \rightarrow \ldots \rightarrow \Delta L_{n,j+1}(\Sigma_{n,j+1})
\]

Once we get all the $S_{i,j}$ for the time step j, we can compute the option prices on all paths at time step j by using the LSM method in [16]. We summarize our memory-reduction method in Algorithm 4.1 below:

Algorithm 4.1.

Phase 1 (path simulation):

Set $L_i^j \leftarrow 0$ for $i = 1, 2, ..., n$

For-loop: $j = 1, 2, ..., m$

1. Extract the current seed d_j

For-loop: $i = 1, 2, ..., n$

2. Get the increment $\Delta L_{i,j}$ by generating $\Sigma_{i,j}$

3. $L_{i,j} \leftarrow L_{i,j-1} + \Delta L_{i,j}$

End for-loop

End for-loop

Phase 2 (price computation):

For-loop: $j = m, ..., 1$

If $j < m$,

4. Recall the seed d_{j+1}
For-loop: \(i = 1, 2, ..., n \)
5. Get the increment \(\Delta L_{i,j+1} \) by regenerating \(\Sigma_{i,j+1} \)
6. \(L_{i,j} \leftarrow L_{i,j+1} - \Delta L_{i,j+1} \)
7. \(S_{i,j} \leftarrow S_0 \exp(r j \Delta t + L_{i,j}) \)
End for-loop
End if

Compute the current option price on all paths using the LSM method
End for-loop

We note that our memory-reduction approach requires only three vectors: an \(m \)-vector for storing the seeds \(\{d_j\}_{j=1}^n \) in Steps 1 and 4, an \(n \)-vector to hold \(\{L_{i,j}\}_{i=1}^n \) for the current time-step \(j \) in Steps 3 and 6 and an \(n \)-vector to hold \(\{S_{i,j}\}_{i=1}^n \) for the current time-step \(j \) in Step 7. The additional computational burden is Steps 1–4 in Phase 1, where we generate the paths and remember the seeds. Since in Phase 2 we are regenerating the exact paths as in the full-storage method, it is clear that the results obtained by the full-storage method and the memory-reduction method are exactly the same. Moreover, since path generation is only one part of all the computations required in the algorithm (the other part—the major part—being the least-squares methods of [16]), we see that the total cost of our method is less than twice that of the full-storage method. We will illustrate these facts numerically in Section 5. We note that in order to use our Algorithm 4.1 for different kinds of option, we only need to specify how \(\Delta L_{i,j} \) in Step 2 are generated.

5. Numerical Examples

In this Section, we apply our method to different models in the class of exponential Lévy processes. In Subsection 5.1, we consider the Black-Scholes model and compare our memory-reduction method with the Brownian-bridge method and also the Crank-Nicolson method. In Subsections 5.2 and 5.3, numerical results are reported for both finite-activity and infinite-activity jump processes, respectively. We compare our results with a binomial tree method and an integro-differential equation method. Regarding the LSM we used, we estimate the continuing values of an option on those “in-the-money” samples and choose the first three Laguerre polynomials plus a constant term as our basis functions throughout the section.

5.1. Black-Scholes model

As an illustration for how to use the memory-reduction method, we begin with the Black-Scholes model:

\[
\frac{dS_t}{S_t} = rd_t + \sigma dW_t,
\]

where \(r \) is the risk-free rate, \(\sigma \) is the volatility, and \(W_t \) is the standard Wiener Process. The memory-reduction method for this simple case was considered in [6], but we repeat
memory-reduction method for pricing american-style options

it here as an introduction to our method. by itô’s lemma, the \(L_t \) in (2.1) becomes

\[
\Delta L_{i,j} = -\frac{1}{2} \sigma^2 \Delta t + \sigma \sqrt{\Delta t} Z_{i,j}
\]

(5.2)

where \(Z_{i,j} \sim \mathcal{N}[0,1] \). by the box-muller transformation [12, pp. 235], a pair of \(Z_{i,j} \) can be generated by a pair of \(\varepsilon_{i,j} \sim \mathcal{N}[0,1] \). hence here the set \(\Sigma_{i,j} \) in algorithm 4.1 has only one element \(\varepsilon_{i,j} \). now we can apply algorithm 4.1 by specifying the procedures in step 2 as follows:

algorithm 5.1 (black-scholes).

1. generate \(Z_{i,j} \sim \mathcal{N}(0,1) \) using \(\varepsilon_{i,j} \sim \mathcal{U}[0,1] \)

2. \(\Delta L_{i,j} \leftarrow -\frac{1}{2} \sigma^2 \Delta t + \sigma \sqrt{\Delta t} Z_{i,j} \)

next we compare our memory-reduction method with the brownian-bridge method in [9] and the crank-nicolson method in [24] on pricing american put options under model (5.1). note that the results obtained by the full-storage method and the memory-reduction method are exactly the same, since the same paths are used to price the option. in our test, we choose the risk-free rate \(r = 0.1 \), the volatility \(\sigma = 0.4 \), and the expiration date \(T = 0.5 \) year. in table 1, “cnm” stands for the results computed by the crank-nicolson method given in [24]. the means and the standard deviations after 25 trials are shown under “mean” and “std” for both the memory-reduction method and the brownian-bridge method. the two “error” columns represent the difference between the corresponding “mean” and “cnm”. we observe that the accuracy is almost the same for all methods. table 2 presents the average cpu times for five consecutive trials of each method. we see that our method brings about slight additional cost, but significantly reduces the storage requirement when compared with the other two methods. we also observe from table 2 that, for all three methods there, the cpu time increases linearly with respect to \(m \) and \(n \) if either one is fixed. this is as expected, since the cpu times should be increasing like \(\mathcal{O}(mn) \).

5.2. merton’s jump-diffusion model

merton’s jump-diffusion process [19] can be described by the following stochastic differential equation under risk-neutral measure \(\mathbb{Q} \) (generally not unique):

\[
\frac{dS_t}{S_{t-}} = rd\tau + \sigma dW_t + dJ_t - \sigma dt.
\]

(5.3)

here \(t^- \) denotes the instant immediately before time \(t \), \(J_t = \sum_{k=1}^{N_t} (Y_k - 1) \) represents sudden jumps in price evolution, \(N_t \) is a poisson counting process with intensity \(\lambda \), and
Table 1: Black-Scholes model with $n = 10^5$ (50,000 plus 50,000 antithetic) and $m = 64$.

<table>
<thead>
<tr>
<th>S_0</th>
<th>CNM</th>
<th>Memory-reduction</th>
<th>Brownian-bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>STD</td>
<td>Error</td>
</tr>
<tr>
<td>6</td>
<td>4.0000</td>
<td>3.99220</td>
<td>0.00002</td>
</tr>
<tr>
<td>8</td>
<td>2.0951</td>
<td>2.09459</td>
<td>0.00192</td>
</tr>
<tr>
<td>10</td>
<td>0.9211</td>
<td>0.92117</td>
<td>0.00167</td>
</tr>
<tr>
<td>12</td>
<td>0.3622</td>
<td>0.36190</td>
<td>0.00208</td>
</tr>
<tr>
<td>14</td>
<td>0.1320</td>
<td>0.13225</td>
<td>0.00125</td>
</tr>
</tbody>
</table>

Table 2: CPU time in seconds and memory requirement when $S_0 = 10$.

<table>
<thead>
<tr>
<th>m</th>
<th>32</th>
<th>64</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>20,000</td>
<td>40,000</td>
<td>80,000</td>
</tr>
<tr>
<td>Full-storage</td>
<td>4.25</td>
<td>8.59</td>
<td>17.19</td>
</tr>
<tr>
<td>Memory-reduction</td>
<td>4.37</td>
<td>8.87</td>
<td>17.74</td>
</tr>
<tr>
<td>Brownian-bridge</td>
<td>4.58</td>
<td>9.22</td>
<td>18.53</td>
</tr>
</tbody>
</table>

{log Y_k}$_{k=1}^N$ are independent and identically distributed $\mathcal{N}(\alpha, \beta^2)$ numbers. Also in (5.3),

$$\sigma = \lambda E^{Q}[Y_k - 1] = \lambda \left[\exp \left(\alpha + \frac{1}{2} \beta^2 \right) - 1 \right]$$

(5.4)

is the compensator such that $E^{Q}[\exp(-r t)S_t] = S_0$. Rewriting (5.3) as (2.1), we have

$$L_t = \left(-\frac{1}{2} \sigma^2 - \sigma W_t - \sum_{k=1}^{N_i} \log(Y_k) - \sigma t \right).$$

(5.5)

Thus for Merton’s jump-diffusion model, Step 2 in Algorithm 4.1 is

Algorithm 5.2 (Merton).

1. Generate $N_{i,j} \sim \text{Poisson}(\lambda \Delta t)$ using the inverse method [13, pp. 128]
2. Generate $Z_{i,j}^1 \sim \mathcal{N}(0,1)$
3. If $N_{i,j} > 0$, generate $Z_{i,j}^2 \sim \mathcal{N}(0,1)$
4. $\Delta L_{i,j} \leftarrow \left(-\frac{1}{2} \sigma^2 - \sigma \right) \Delta t + \sigma \sqrt{\Delta t} Z_{i,j}^1 + \alpha N_{i,j} + \beta \sqrt{N_{i,j}} Z_{i,j}^2$

Now we test our method on an American put option under Merton’s jump-diffusion model. The underlying stock price S_0 at the current time is 40. The parameter values are $r = 8\%$, $\sigma = \sqrt{0.05}$, $\lambda = 5$, and $\beta = \sqrt{0.05}$. We let $\alpha = -\frac{1}{2} \beta^2$ such that $E^{Q}[Y_t] = 1$. The numerical results are reported in Table 3, where the columns “Mean” and “STD” are
Table 3: Merton’s model with $n = 10^5$ and $m = T/0.01$.

<table>
<thead>
<tr>
<th>Strike K</th>
<th>Amin’s</th>
<th>Mean</th>
<th>STD</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expiring time $T = 0.25$ year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.674</td>
<td>0.6741</td>
<td>0.0064</td>
<td>0.0001</td>
</tr>
<tr>
<td>35</td>
<td>1.688</td>
<td>1.6872</td>
<td>0.0121</td>
<td>−0.0008</td>
</tr>
<tr>
<td>40</td>
<td>3.630</td>
<td>3.6248</td>
<td>0.0174</td>
<td>−0.0052</td>
</tr>
<tr>
<td>45</td>
<td>6.734</td>
<td>6.7288</td>
<td>0.0256</td>
<td>−0.0052</td>
</tr>
<tr>
<td>50</td>
<td>10.696</td>
<td>10.6867</td>
<td>0.0203</td>
<td>−0.0093</td>
</tr>
<tr>
<td>Expiring time $T = 1$ year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.720</td>
<td>2.7191</td>
<td>0.0132</td>
<td>−0.0009</td>
</tr>
<tr>
<td>35</td>
<td>4.603</td>
<td>4.6064</td>
<td>0.0204</td>
<td>0.0034</td>
</tr>
<tr>
<td>40</td>
<td>7.030</td>
<td>7.0242</td>
<td>0.0199</td>
<td>−0.0058</td>
</tr>
<tr>
<td>45</td>
<td>9.954</td>
<td>9.9461</td>
<td>0.0326</td>
<td>−0.0079</td>
</tr>
<tr>
<td>50</td>
<td>13.318</td>
<td>13.3050</td>
<td>0.0326</td>
<td>−0.0130</td>
</tr>
</tbody>
</table>

Table 4: CPU time in seconds and memory requirement when $T = 1, K = 40$.

<table>
<thead>
<tr>
<th>m</th>
<th>50</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>Memory requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>20,000</td>
<td>40,000</td>
<td>80,000</td>
<td>20,000</td>
<td>$n(m + 1)$</td>
</tr>
<tr>
<td>Full-storage</td>
<td>22.05</td>
<td>43.86</td>
<td>87.77</td>
<td>22.05</td>
<td>43.52</td>
</tr>
<tr>
<td>Memory-reduction</td>
<td>36.93</td>
<td>73.04</td>
<td>146.35</td>
<td>36.93</td>
<td>73.14</td>
</tr>
</tbody>
</table>

Accordingly, the asset price process S_t is modeled as

$$S_t = S_0 \exp((r - q)t + X_t - \sigma t)$$ (5.7)
under the risk-neutral measure \mathbb{Q} (generally not unique) with a continuous dividend yield of q and a constant continuously compounded interest rate of r. In model (5.7), the risk-neutral drift rate is $r - q$ and the compensator σ satisfies $\exp(\sigma) = \mathbb{E}_\mathbb{Q}[\exp(X_t)]$ such that $\mathbb{E}_\mathbb{Q}[\exp(-(r - q)t)S_t] = S_0$. By evaluating $\Phi_{X_i}(u)$ at $-i$, we have

$$\sigma = -\frac{1}{\nu} \log \left(1 - \mu \nu - \frac{1}{2} \sigma^2 \nu \right).$$

Thus Step 2 in Algorithm 4.1 becomes:

Algorithm 5.3 (variance gamma).

1. Generate $Z_{i,j} \sim \mathcal{N}(0,1)$
2. Generate $\Delta G_{i,j} \sim \gamma(\Delta t \nu)$ using Best’s generator given in Algorithm A.1
3. $\Delta L_{i,j} \leftarrow \mu \Delta G_{i,j} + \sigma \sqrt{\Delta G_{i,j}} Z_{i,j} - \sigma \Delta t$

Now consider an American put option with maturity $T = 0.56164$ written on a stock with current price $S_0 = 1369.41$. The VG parameters after model calibration are given by $r = 0.0541$, $q = 0.012$, $\sigma = 0.20722$, $\nu = 0.50215$, and $\theta = -0.22898$. We test our method on various strike prices K and with $m = 56 \approx T/0.01$. The results are presented in Table 5. For comparison, results obtained by the partial integro-differential equation approach in [14] are given under “PIDE”. As usual, the “Mean” and “STD” are the means and the standard deviations respectively, obtained after 25 trials. The difference between “Mean” and “PIDE” are computed in the column “Error”. Again, the numerical results confirm the accuracy of our method. The average CPU times of five consecutive trials are given in Table 6, and the CPU time by our method is again bounded above by twice that by the full-storage method.

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>50</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>Memory requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20,000</td>
<td>40,000</td>
<td>80,000</td>
<td>20,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full-storage</td>
<td>58.61</td>
<td>117.41</td>
<td>234.93</td>
<td>58.61</td>
<td>118.58</td>
<td>240.12</td>
</tr>
<tr>
<td>Memory-reduction</td>
<td>112.53</td>
<td>225.34</td>
<td>450.73</td>
<td>112.53</td>
<td>229.05</td>
<td>462.36</td>
</tr>
</tbody>
</table>
5.4. Remarks on the efficiency of the memory-reduction method

In the above three subsections, we have illustrated how to apply our memory-reduction method to specific exponential Lévy models. For both the full-storage method and the memory-reduction method, the computational cost is composed of two parts: the cost in path simulation and the cost in price computation. Compared with the full-storage method, the cost in path simulation is almost doubled in the memory-reduction method while the cost in price computation of both methods are the same. Hence our method always uses less than twice the time required by the full-storage method. In the following, we mention two factors affecting this overhead cost.

In Table 7, we give the ratio of the timing between the two methods in the “Ratio” rows for $m = 50$ and $n = 20,000$. In the table, the number in the square bracket $[\cdot]$ for each model is the average CPU time in seconds for generating 1,000 sample paths with 50 time steps. We observe from the table that the cost in path simulation in the Black-Scholes model is much less than that in the variance gamma model. As a consequence, our memory-reduction method almost produces no additional computational cost in the Black-Scholes model, while in the variance gamma model the CPU time of our method nearly doubles that of the full-storage method.

Another factor is the number of $S_{i,j}$ that are in-the-money. The rows “In-the-money (%)” in Table 7 count the average percentages of those “in-the-money” $S_{i,j}$ in the $m \cdot n$ samples in 5 trials. As the difference $K - S_0$ goes up, the number of “in-the-money” samples goes up, which leads to an increase in the cost of price computation. Consequently, the ratio goes down.

6. Conclusion

In this paper, we propose a new simulation technique for pricing American options under exponential Lévy processes. It reduces the storage requirement to $O(m + n)$. For machines with limited memory, we can now enlarge m and n to improve the accuracy of the pricing. Furthermore, our memory-reduction method can easily be extended to pricing other path-dependent options with early-exercise features, such as Asian Bermudan options or multi-asset American options. Hence our method can be valuable in investigating option prices, especially those written on single or multiple assets with complex American triggers, long-term options, or any combination of these properties. We also remark that our memory reduction method has a natural extension to other relevant models such as stochastic volatility models, as long as the forward-path method (with no memory reduction) uses pseudorandom numbers in Monte Carlo simulation. However, the implementation becomes somehow more subtle, as different levels of randomness arise. We plan to consider such extensions in our future work.
R. H. Chan and T. Wu

Black-Scholes model [0.0331]

<table>
<thead>
<tr>
<th>S_0</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>"In-the-money" (%)</td>
<td>98.9</td>
<td>87.3</td>
<td>49.0</td>
<td>15.5</td>
<td>4.7</td>
</tr>
<tr>
<td>Full-storage</td>
<td>13.8</td>
<td>11.52</td>
<td>6.68</td>
<td>2.74</td>
<td>1.48</td>
</tr>
<tr>
<td>Memory-reduction</td>
<td>14.11</td>
<td>11.78</td>
<td>6.89</td>
<td>2.87</td>
<td>1.61</td>
</tr>
<tr>
<td>Ratio</td>
<td>1.022</td>
<td>1.023</td>
<td>1.031</td>
<td>1.047</td>
<td>1.088</td>
</tr>
</tbody>
</table>

Merton’s model ($T = 1$) [1.62]

Strike K	30	35	40	45	50
"In-the-money" (%)	21.6	33.6	52.4	69.7	79.1
Full-storage	17.94	19.37	21.65	23.71	24.87
Memory-reduction	32.31	33.86	36.02	38.11	39.29
Ratio	1.801	1.748	1.664	1.607	1.580

Variance gamma model [3.85]

Strike K	1200	1260	1320	1380
"In-the-money" (%)	11.8	16.3	23.1	37.2
Full-storage	57.90	58.51	59.37	61.04
Memory-reduction	112.47	113.18	113.91	115.61
Ratio	1.942	1.934	1.919	1.894

A. Appendix

For completeness, here we give the algorithm for generating the gamma random variables. We also give the commands in FORTRAN and MATHEMATICA for finding the seeds of a sequence of random numbers.

Algorithm A.1 below generates Gamma random variables $\gamma(a)$ with density

$$p(x) = \frac{x^{a-1} e^{-x}}{\Gamma(a)}$$

when $a \geq 1$. For $a < 1$, one uses the transformation $\gamma(a) = \gamma(1+a)U^{1/a}$ with $U \sim \mathcal{U}[0, 1]$. See [12, pp. 410 and pp. 420] for a comprehensive discussion.

Algorithm A.1 (Best’s generator).

1. $b \leftarrow a - 1$, $c \leftarrow 3a - \frac{3}{4}$
2. Repeat
 2. Generate random variables $U, V \sim \mathcal{U}[0, 1]$
 3. $W \leftarrow U(1 - U)$, $Y \leftarrow \sqrt{\frac{2}{W}}(U - \frac{1}{2})$, $X \leftarrow b + Y$
 4. If $X < 0$, go to Repeat
 5. $Z \leftarrow 64W^3V^2$
3. Until $\log(Z) \leq 2b \log(\frac{X}{b} - Y)$
In FORTRAN 90 [8], the command to get a $\mathcal{U}[0,1]$ number is \texttt{rand()}. The commands to set the seed to d are:

```fortran
    call random_seed(size=k)
    seed(1:k) = d
    call random_seed(put=seed(1:k))
```

where k is the number of 32-bit words used to hold the seed. The commands to extract the current seed d are:

```fortran
    call random_seed(get=current(1:k))
    d = current(1:k)
```

In MATHEMATICA [25], the seeds are set by “\texttt{SeedRandom[d]}”. To extract the current seed, use “\texttt{c=RandomState}”. MATHEMATICA provides $\mathcal{U}[0,1]$ numbers with the command “\texttt{Random[]}”.

Acknowledgments

Our research was supported in part by HKRGC Grant CUHK 400408 and CUHK DAG 2060257.

References