
East Asian Journal on Applied Mathematics Vol. 1, No. 1, pp. 20-34

doi: 10.4208/eajam.020310.120410a February 2011

Memory-Reduction Method for Pricing

American-Style Options under Exponential Lévy

Processes

Raymond H. Chan∗ and Tao Wu

Department of Mathematics, The Chinese University of Hong Kong, Shatin, NT,

Hong Kong SAR, PR China.

Received 2 March 2010; Accepted (in revised version) 12 April 2010

Available online 26 October 2010

Abstract. This paper concerns the Monte Carlo method in pricing American-style op-

tions under the general class of exponential Lévy models. Traditionally, one must store

all the intermediate asset prices so that they can be used for the backward pricing in the

least squares algorithm. Therefore the storage requirement grows like O (mn), where

m is the number of time steps and n is the number of simulated paths. In this paper,

we propose a simulation method where the storage requirement is only O (m+ n). The

total computational cost is less than twice that of the traditional method. For machines

with limited memory, one can now enlarge m and n to improve the accuracy in pricing

the options. In numerical experiments, we illustrate the efficiency and accuracy of our

method by pricing American options where the log-prices of the underlying assets fol-

low typical Lévy processes such as Brownian motion, lognormal jump-diffusion process,

and variance gamma process.

Key words: American options, Monte Carlo simulation, memory reduction, exponential Lévy pro-

cesses.

1. Introduction

During the past decade, the exponential Lévy models have been popularized in finan-

cial modeling among researchers as well as practitioners, see e.g. [11]. The classical

Black-Scholes model [3] presumes that the price of the underlying asset follows a geo-

metric Brownian motion with constant volatility. However, the empirical observation in

real financial trading reveals that the implied volatility surface often displays a so-callel

volatility smile [18]. Moreover, the distribution of the asset return, assumed to be Gaus-

sian in the Black-Scholes model, exhibits a heavy tail [10], i.e. large moves of the market

∗Corresponding author. Email addresses: r
han�math.
uhk.edu.hk (R. H. Chan), twu�math.
uhk.edu.hk (T. Wu)
http://www.global-sci.org/eajam 20 c©2011 Global-Science Press



Memory-reduction method for pricing American-style options 21

have decent probabilities to occur. As remedies for Black-Scholes, the exponential Lévy

models contain Lévy jumps in addition to the classical diffusion, so that the phenomena of

the volatility smiles and the heavy tails can be generically accounted for [11]. We remark

that the exponential Lévy model is a very general class of models. It includes well-known

examples such as the Black-Scholes model [3], lognormal jump-diffusion model [19],

double-exponential jump-diffusion model [15], variance gamma model [17], normal in-

verse Gaussian model [2], CGMY model [5], etc. We refer to the classical reference [11]

for further background in financial modeling by exponential Lévy processes. The present

paper concerns the use of Monte Carlo simulation in pricing American-style options under

the general framework of exponential Lévy models.

It is well known, see e.g. [13], that with the no-arbitrage principle the option price is

given by the discounted expected payoff under certain risk-neutral measure. This leads to

option pricing by the Monte Carlo method, for which the first application was made by

Boyle [4] in 1977. Since then, Monte Carlo method has been a popular tool in pricing fi-

nancial derivatives [13]. Yet, Monte Carlo method is known to have difficulties in handling

American-style options with early exercise feature. In 2001 Longstaff and Schwartz [16]

proposed a practical algorithm, named least squares method (LSM), to price American op-

tions. Their method is based on a backward-in-time induction, where at each time step the

continuation value of the option is estimated by a least square approximation.

However, one drawback of LSM is that, in order to compute the intermediate exercise

prices at all time steps, it requires the storage of all asset prices at all time steps for all sim-

ulated paths. Thus the total storage requirement grows like O (mn) where m is the number

of time steps and n is the number of simulated paths. The plain Monte Carlo method, re-

ferred as the full-storage method in this paper, is therefore computationally inefficient since

the accuracy of the simulation is severely limited by the storage requirement.

This storage problem can be alleviated by “bridge methods" such as the Brownian

bridge [9], the inverse Gaussian bridge [22], and the gamma bridge [23] — where the

memory requirement can be reduced to O (n log m). Nevertheless, one drawback is that

a specific bridge method can only work on the corresponding model that the price of the

underlying asset follows. Thus the Brownian bridge is suitable for Brownian motion, the

gamma bridge for the variance gamma process, and so on. That is to say, all bridge meth-

ods are model-dependent, which limits their use in applications.

In this paper, we develop a memory-reduction method, which does not require storing

of all intermediate asset prices. The storage is significantly reduced to O (m+ n). Coupled

with the least squares method proposed in [16], our memory-reduction method is appli-

cable to the general class of exponential Lévy processes. The main idea of our method

is to first generate the price process forward until the expiration time, and to store only

the seeds of the random number sequences at each time step. When computing the op-

tion prices backwardly, we recompute the just-in-time asset prices using the corresponding

seeds. Since the prices are recomputed exactly, the memory-reduction method gives the

same result as the full-memory method. The additional computational cost is the cost of

regenerating the random numbers corresponding to the asset prices. The total computa-

tional cost is therefore always less than twice that of the full-storage method.


