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Abstract. Some efficient numerical schemes are proposed to solve one-dimensional and

two-dimensional multi-term time fractional diffusion-wave equation, by combining the

compact difference approach for the spatial discretisation and an L1 approximation for

the multi-term time Caputo fractional derivatives. The unconditional stability and global

convergence of these schemes are proved rigorously, and several applications testify to

their efficiency and confirm the orders of convergence.
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1. Introduction

Recently, fractional differential equations have been invoked in various applications.

Unlike classical differential equations of integer order, where the derivatives depend only

on the local behaviour of the function, fractional differential equations accumulate all of

the information on the function in a weighted form. This is the so-called memory effect in

physics, chemistry and other research areas — e.g. see Refs. [1–3] and references therein.

In particular, the time fractional diffusion-wave equation models a wide range of important

physical phenomena, including inter alia the propagation of mechanical waves in viscoelas-

tic media [4], a non-Markovian diffusion process with memory [5], and charge transport

in amorphous semiconductors [6].

Since analytical solutions are rare and to date restricted to simpler fractional partial dif-

ferential equations, there has been increasing interest in the development of effective and

easy to use numerical schemes. Yuste & Murillo [7,8] constructed difference schemes using

an L1 discretisation formula for the fractional diffusion equation and an L2 discretisation

formula for fractional diffusion-wave equations, respectively. The stability analysis of their
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schemes was carried out via the von Neumann method. Langlands & Henry [9] considered

an implicit numerical scheme for a fractional diffusion equation, using the backward Euler

approximation to discretise the first order time derivative and an L1 scheme to approxi-

mate the fractional order time derivative. Chen et al. [10] constructed a difference scheme

based on the Grünwald-Letnikov formula. They also provided both an explicit and an im-

plicit scheme for the two-dimensional anomalous sub-diffusion equation, using relation-

ships between the fractional Grünwald-Letnikov and Riemann-Liouville definitions [11].

The corresponding theoretical analysis for stability and convergence was undertaken using

the Fourier method, and a highly accurate algorithm was constructed exploiting Richard-

son extrapolation. Sun & Wu [12] derived two fully discrete difference schemes for the

fractional diffusion-wave and sub-diffusion equations, and proved that the schemes are

uniquely solvable, unconditionally stable, and respectively O (τ3−α+h2) and O (τ2−α+h2)

convergent in the maximum norm. Recently, Zhang et al. [13] constructed a compact alter-

nating direction implicit (ADI) scheme to solve two-dimensional time fractional diffusion-

wave equations.

There has also been some previous work on the numerical solution of problems with

multiple fractional derivatives. Diethelm & Luchko [14] gave an algorithm for solving the

multi-term linear fractional differential equations based on Ref. [15], but their method may

require a large amount of computational effort to calculate the associated weights. Edwards

et al. [16] solved linear multi-term fractional differential equations through a reduction to

a system of ordinary and fractional differential equations. Based on the analogue equa-

tion concept, Katsikadelis [17] presented a numerical method to solve linear multi-term

fractional differential equations.

A key issue in solving fractional-order diffusion models numerically is the design of

efficient algorithms for the space and time discretisation. The complexity of fractional

differential equations is because the fractional derivatives are nonlocal and characterised

by historic dependence and universal mutuality. Thus all previous solutions must be saved

to compute the solution at the current time level, which makes the storage expensive. Due

to their high spatial accuracy, compact difference methods need few grid points to produce

accurate solutions. However, there appear to be very few previous studies on efficient

numerical methods for problems involving multi-term fractional derivatives.

This article provides some numerical schemes to solve the one-dimensional and two-

dimensional multi-term fractional differential equations of the general form (cf. [17–19])

P(CDt)u(X, t) = κ∆u(X, t) + f (X, t) , X ∈ Ω , 0< t ¶ T , (1.1)

where κ is a positive diffusion constant. The multi-term fractional operator P(CDt) is de-

fined by

P(CDt)v(X, t) =
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