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Abstract. Modeling genetic regulatory networks is an important problem in genomic
research. Boolean Networks (BNs) and their extensions Probabilistic Boolean Networks
(PBNs) have been proposed for modeling genetic regulatory interactions. In a PBN, its
steady-state distribution gives very important information about the long-run behavior
of the whole network. However, one is also interested in system synthesis which requires
the construction of networks. The inverse problem is ill-posed and challenging, as there
may be many networks or no network having the given properties, and the size of the
problem is huge. The construction of PBNs from a given transition-probability matrix
and a given set of BNs is an inverse problem of huge size. We propose a maximum
entropy approach for the above problem. Newton’s method in conjunction with the
Conjugate Gradient (CG) method is then applied to solving the inverse problem. We
investigate the convergence rate of the proposed method. Numerical examples are also
given to demonstrate the effectiveness of our proposed method.
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1. Introduction

Building mathematical models and developing efficient numerical algorithms for study-
ing regulatory interactions among DNA, RNA, proteins, and small molecules are important
research issues in computational systems biology [7,26]. In fact, many formalisms and
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mathematical models have been proposed in the literature to study genetic regulatory
networks such as Bayesian networks [25], Boolean Networks (BNs) [21,22], multivari-
ate Markov chain models [9], regression models [45], Probabilistic Boolean Networks
(PBNs) [32-35], and a review on other mathematical models can also be found in [16,36].
Among these models, BNs and their extensions PBNs have received much attention as they
are able to capture the switching behavior of biological processes [26].

Boolean logic owes its name to George Boole who devised a mathematical framework
for logical reasoning [4,5]. BN models were first introduced by Kauffman [21-24]. Re-
views of BN models can be found in [26,37]. In a BN, the gene expression states are
quantized to only two levels: on and off (represented as 1 and 0). The target gene is
determined by several genes called its input genes via a Boolean function. When the input
genes and the Boolean functions are given, then we say that a BN is defined. We remark
that a BN is a deterministic model and the only randomness comes from its initial state.
Given an initial state, the BN will eventually enter into a cycle of states called its attrac-
tor cycle. Since genetic regulation processes exhibit uncertainty and microarray data sets
used to infer the model have errors due to experimental noise in the complex measure-
ment processes, it is more realistic to consider stochastic models. The idea of extending
the concept of a BN (a deterministic model) to a PBN (a probabilistic model) is as follows.
For each gene, there can be more than one Boolean function and corresponding selection
probabilities are assigned to the Boolean functions. The dynamics (transitions) of a PBN
can be studied using Markov chain theory [10,32,35].

Given a PBN, the network behavior is characterized by its steady-state probability dis-
tribution which gives the first-order statistical information of a PBN. One can understand a
genetic regulatory network and identify the influence of different genes via such a network.
In [44], an efficient method has been used to construct the transition probability matrix
and the standard iterative power method for computing the resulting steady-state proba-
bility distribution. Later, also a matrix approximation method has been proposed in [11] to
get an approximation of the steady-state probability distribution efficiently. Furthermore,
it is possible to control some genes in a network so as to drive the whole network into a
desirable state or a steady-state probability distribution (a mixture of states). Therapeutic
gene intervention or gene control policy [12,15, 33, 35] can therefore be developed and
studied.

Here we study the problem of constructing a PBN based on a given transition-probability
matrix and a set of BNs. This is an inverse problem of huge size. The inverse problem is
ill-posed, meaning that there can be many networks or no network having the desirable
properties. Pal et al. [29] have presented two algorithms to solve the inverse problem of
finding attractors constituting a BN. Network inference from steady-state data is a very im-
portant problem as most microarray data sets are assumed to be obtained from sampling
the steady-state. In fact, the inverse problem can be split into two different tasks. The first
task is to construct a sparse transition-probability matrix from a given network steady-state
probability distribution. A maximum entropy rate approach has been proposed for this pur-
pose [13]. The second task is to construct a PBN (the BNs and the selection probabilities)
from a given steady-state probability distribution. Here, we propose to apply Newton’s



