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Abstract. This article is devoted to the study of some high-order difference schemes

for the distributed-order time-fractional equations in both one and two space dimen-

sions. Based on the composite Simpson formula and Lubich second-order operator, a

difference scheme is constructed with O (τ2+h4+σ4) convergence in the L1(L∞)-norm

for the one-dimensional case, where τ,h and σ are the respective step sizes in time,

space and distributed-order. Unconditional stability and convergence are proven. An

ADI difference scheme is also derived for the two-dimensional case, and proven to be

unconditionally stable and O (τ2| lnτ|+ h4
1 + h4

2 +σ
4) convergent in the L1(L∞)-norm,

where h1 and h2 are the spatial step sizes. Some numerical examples are also given to

demonstrate our theoretical results.
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1. Introduction

For several decades, considerable attention has increasingly been given to fractional dif-

ferential equations, mainly because such equations with fractional operators can be more

accurate than classical differential equations in describing physical and chemical processes

with nonlocal connectivity [1–4] — e.g. a time-fractional differential equation to model

anomalous diffusion in porous media. For the single-term time-fractional equation, quite

extensive research works have investigated its analytic solution [5–8] and numerical meth-

ods for both one-dimensional [9–17] and two-dimensional [18–21] cases. Recently, some

attention has also been given to a more general class of time-fractional distributed-order
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equations, which can be described in the Caputo sense as follows:

Dw
t

u(x, t) =∆u(x, t) + F(x, t) , x ∈ Ω , 0< t ≤ T , (1.1)

u(x, 0) = 0 , x ∈ Ω , (1.2)

u(x, t)|x∈∂ Ω =ψ(x, t) , 0< t ≤ T , (1.3)

where

Dw
t u(x , t) =

∫ 1

0

w(α) C
0 Dαt u(x , t)dα , w(α) ¾ 0 ,

∫ 1

0

w(α)dα = c0 > 0 ,

C
0 Dαt u(x , t) =







1

Γ (1−α)

∫ t

0

(t − ξ)−α ∂ u

∂ ξ
(x ,ξ)dξ , 0≤ α < 1 ,

ut(x , t) = 0 , α = 1 ,

and both F(x, t) and ψ(x, t) are given smooth functions with ψ(x, 0) = 0 where x ∈ ∂Ω.

Incidentally, if an initial condition is inhomogeneous it is easy to make its right-hand side

zero by a suitable transformation [22].

Some numerical methods have also been applied to the distributed-order differential

equation, and a matrix solution approach has been proposed by Podlubny et al. [23]. Di-

ethelm & Ford [24] presented numerical methods for solving distributed-order ordinary dif-

ferential equations, where the distributed-order integral is first approximated by a quadra-

ture formula and the resulting multi-term fractional differential equations can then be re-

duced to a system of single-term equations. Similar techniques for the multi-term fractional

differential equation were discussed by Liu et al. [25]. Recently, Ye et al. [26] constructed

an implicit difference scheme for time distributed-order Riesz space fractional diffusion on

bounded domains, and proved unconditional stability and convergence by mathematical

induction. Ford et al. [27] discussed a numerical method for a distributed-order time-

fractional diffusion equation, and Morgado & Rebelo [28] presented an implicit scheme

for the numerical approximation of a distributed-order time-fractional reaction-diffusion

equation with a nonlinear source term. In these last three contributions, the midpoint

rule was invoked to approximate the distribution integral, and the same discrete L1 for-

mula was used to approximate the Caputo fractional derivatives involved, so the numerical

accuracy of each of these schemes in the time variable was approximately first order. Kat-

sikadelis [29] presented a numerical method for distributed-order differential equations

using the trapezoidal rule, and the approximate multi-term fractional differential equa-

tion was solved similarly. However, stability and convergence were only demonstrated by

numerical experiments, without proof.

It is well known that in long time simulations the global storage and computational

time are typically very large for such difference schemes applied to fractional differential

equations, so the construction of a high-order difference scheme is desirable to reduce

computational complexity. In this article, for the one-dimensional and two-dimensional

distributed-order equations with smooth solutions we propose high-order backward differ-

ence schemes, via the composite Simpson formula and a Lubich high-order operator [14,


