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Uncertainty Quantification of Derivative Instruments
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Abstract. Model and parameter uncertainties are common whenever some parametric
model is selected to value a derivative instrument. Combining the Monte Carlo method
with the Smolyak interpolation algorithm, we propose an accurate efficient numerical
procedure to quantify the uncertainty embedded in complex derivatives. Except for the
value function being sufficiently smooth with respect to the model parameters, there
are no requirements on the payoff or candidate models. Numerical tests carried out
quantify the uncertainty of Bermudan put options and down-and-out put options under
the Heston model, with each model parameter specified in an interval.
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1. Introduction

In the context of pricing and hedging exotic over-the-counter (OTC) derivatives, the
price process of the underlying asset can be described by different types of parametric
models, such as stochastic volatility models (e.g. Ref. [26]) and fraction Brownian motion
models (e.g. Ref. [33]). The parameters of these models can be estimated by model cali-
bration, but there are two issues: (1) different kinds of models can be perfectly calibrated
to the same market data [38]; and (2) different calibration methods may yield different
estimations for each parameter in a specific model [21].

These empirical issues, together with limited knowledge of the market dynamics, con-
front an agent with ambiguity about which model is the best to value a target derivative,
especially since the calibrated models can provide quite different values for the target
derivative. Indeed, model and parameter ambiguities are ubiquitous whenever a para-
metric model is employed, in two different categories according to Ref. [30] — viz. risk
and uncertainty. Model (parameter) risk relates to those settings where the probabilities
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of the candidate models (parameter realisations) are known, while model (parameter) un-
certainty arises from a lack of knowledge of the probabilistic information on these models
(parameter realisations). Here we focus on numerically quantifying model (parameter)
uncertainty embedded in a derivative instrument

Model uncertainty is a growing concern for regulation and risk management [6,17], and
researchers have proposed both model-independent and model-dependent approaches to
deal with model uncertainty in applications. A model-independent approach for the value
bounds of a derivative is an effective way to eliminate model (parameter) uncertainty, by
providing an agent with a conservative reference to quote a target derivative — see e.g.
Refs. [5,9,12,27,40,41]. However, these model-independent approaches may not work
when the target derivative is too complex to be hedged model-independently, and a ro-
bust alternative is to employ a model-dependent approach by considering a set of plausible
models to value the derivative. At the parameter level, a confidence interval rather than the
point estimation of each model parameter can be employed, to account for parameter un-
certainty in the setting of option pricing. We believe this idea was first proposed in Refs. [2]
and [32], and traders and institutions often attack model (parameter) uncertainty through
a worst-case approach — e.g. by stress testing portfolios [37]. Following a worst-case ap-
proach, Cont [11] proposed an uncertainty measure — viz. the spread between lower and
upper bounds of the target derivative value when a set of plausible models are employed,
which accounts for both hedgeable and unhedgeable risk.

However, although a set of meaningful axioms is satisfied, to date little attention has
been paid on how to calculate this uncertainty measure accurately for exotic derivatives
under complex parametric models — but here we propose an accurate and efficient nu-
merical method to calculate the worst-case value of a derivative instrument under model
and parameter uncertainties, combining the Smolyak sparse-grid interpolation approxima-
tion with the Monte Carlo-based optimisation method. The only assumption we make is
that the derivative value function is smooth enough with respect to the model parameters,
which should be a premise feature whenever a parametric model is employed to value an
exotic derivative, for otherwise the model user suffers an additional risk if the model pa-
rameters are not estimated with high accuracy. Our second objective is to use entropy to
complement the uncertainty measure proposed by Cont [11] to assess the uncertainty of the
target derivative value with respect to model and parameter uncertainties. In some cases,
his uncertainty measure may have the same value spread (not value bounds) for two dif-
ferent derivatives, when cannot be used to distinguish the uncertainty embedded in them.
The entropy measure can be used as an alternative, to further quantify their uncertainty
from the perspective of the amount of information provided by the ensemble of derivative
values.

Our work reflects two strands in the literature. The first and foremost is the calculation
of robust values of complex exotic derivatives in a model-dependent framework, where the
model parameters are specified in terms of an interval rather than a point in each parameter
direction — e.g. the famous volatility uncertainty model [2,32], where the underlying asset
price follows

dS, =rS,dt+0,S,dW,, o, € [O-min: Umax] .



