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Abstract. Model and parameter uncertainties are common whenever some parametric

model is selected to value a derivative instrument. Combining the Monte Carlo method

with the Smolyak interpolation algorithm, we propose an accurate efficient numerical

procedure to quantify the uncertainty embedded in complex derivatives. Except for the

value function being sufficiently smooth with respect to the model parameters, there

are no requirements on the payoff or candidate models. Numerical tests carried out

quantify the uncertainty of Bermudan put options and down-and-out put options under

the Heston model, with each model parameter specified in an interval.
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1. Introduction

In the context of pricing and hedging exotic over-the-counter (OTC) derivatives, the

price process of the underlying asset can be described by different types of parametric

models, such as stochastic volatility models (e.g. Ref. [26]) and fraction Brownian motion

models (e.g. Ref. [33]). The parameters of these models can be estimated by model cali-

bration, but there are two issues: (1) different kinds of models can be perfectly calibrated

to the same market data [38]; and (2) different calibration methods may yield different

estimations for each parameter in a specific model [21].

These empirical issues, together with limited knowledge of the market dynamics, con-

front an agent with ambiguity about which model is the best to value a target derivative,

especially since the calibrated models can provide quite different values for the target

derivative. Indeed, model and parameter ambiguities are ubiquitous whenever a para-

metric model is employed, in two different categories according to Ref. [30] — viz. risk

and uncertainty. Model (parameter) risk relates to those settings where the probabilities
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of the candidate models (parameter realisations) are known, while model (parameter) un-

certainty arises from a lack of knowledge of the probabilistic information on these models

(parameter realisations). Here we focus on numerically quantifying model (parameter)

uncertainty embedded in a derivative instrument

Model uncertainty is a growing concern for regulation and risk management [6,17], and

researchers have proposed both model-independent and model-dependent approaches to

deal with model uncertainty in applications. A model-independent approach for the value

bounds of a derivative is an effective way to eliminate model (parameter) uncertainty, by

providing an agent with a conservative reference to quote a target derivative — see e.g.

Refs. [5, 9, 12, 27, 40, 41]. However, these model-independent approaches may not work

when the target derivative is too complex to be hedged model-independently, and a ro-

bust alternative is to employ a model-dependent approach by considering a set of plausible

models to value the derivative. At the parameter level, a confidence interval rather than the

point estimation of each model parameter can be employed, to account for parameter un-

certainty in the setting of option pricing. We believe this idea was first proposed in Refs. [2]

and [32], and traders and institutions often attack model (parameter) uncertainty through

a worst-case approach — e.g. by stress testing portfolios [37]. Following a worst-case ap-

proach, Cont [11] proposed an uncertainty measure — viz. the spread between lower and

upper bounds of the target derivative value when a set of plausible models are employed,

which accounts for both hedgeable and unhedgeable risk.

However, although a set of meaningful axioms is satisfied, to date little attention has

been paid on how to calculate this uncertainty measure accurately for exotic derivatives

under complex parametric models — but here we propose an accurate and efficient nu-

merical method to calculate the worst-case value of a derivative instrument under model

and parameter uncertainties, combining the Smolyak sparse-grid interpolation approxima-

tion with the Monte Carlo-based optimisation method. The only assumption we make is

that the derivative value function is smooth enough with respect to the model parameters,

which should be a premise feature whenever a parametric model is employed to value an

exotic derivative, for otherwise the model user suffers an additional risk if the model pa-

rameters are not estimated with high accuracy. Our second objective is to use entropy to

complement the uncertainty measure proposed by Cont [11] to assess the uncertainty of the

target derivative value with respect to model and parameter uncertainties. In some cases,

his uncertainty measure may have the same value spread (not value bounds) for two dif-

ferent derivatives, when cannot be used to distinguish the uncertainty embedded in them.

The entropy measure can be used as an alternative, to further quantify their uncertainty

from the perspective of the amount of information provided by the ensemble of derivative

values.

Our work reflects two strands in the literature. The first and foremost is the calculation

of robust values of complex exotic derivatives in a model-dependent framework, where the

model parameters are specified in terms of an interval rather than a point in each parameter

direction — e.g. the famous volatility uncertainty model [2,32], where the underlying asset

price follows

dSt = rSt d t +σtSt dWt , σt ∈ [σmin,σmax] .


