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Abstract. Exact traveling wave solutions of the fifth order space-time fractional Sawada-
Kotera equation are derived by generalised exp(−Φ(ξ))-expansion and an improved
fractional sub-equation method. Among the solutions obtained there are hyperbolic,
trigonometric, exponential and rational ones. The methods are simple, efficient and can
be applied to other nonlinear problems.
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1. Introduction

Nonlinear complex phenomena play an important role in physical sciences, and the gen-
eralised KdV equation is widely used in the description of waves in nonlinear LC circuits,
shallow and stratified internal waves, ion-acoustic waves [1–3]. The higher-order mem-
bers of the KdV hierarchy find applications in internal and surface waves, gravity-capillary
waves, floating ice coat and many other fields — cf. Refs. [3–8]. Exact solutions of the
corresponding nonlinear PDEs can provide valuable information about natural phenom-
ena. Considerable efforts spent on the solution of such equations resulted in new meth-
ods — e.g. the Hirota bilinear scheme [9], inverse scattering scheme [1], Bäcklund trans-
form method [4], homogeneous balance scheme [10], generalised exp(−Φ(ξ))-expansion
method [11], (G′/G)-expansion method [12] and so on [13–15].

Recently, special attention has been paid to analytic solutions of differential equations
[16–27]. It is often assumed that the solution is a polynomial of degree determined by
the homogeneous balance principle [42]. Let us also note the sub-equation and expansion
methods, which allowed to derive a number of analytical solutions to linear and non-linear
PDEs, including exponential, polynomial and rational solutions, trigonometric wave solu-
tions, solitary wave solutions in hyperbolic form and many others — cf. Refs. [16–22].
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On the other hand, in the last three decades, fractional differential equations (FDEs)
found numerous applications, especially in fluid flows, viscoelasticity, control theory, chemi-
cal physics, electrical networks [28–30]. Consequently, the methods for their solutions have
been developed. Thus using the Mittag-Leffler function in exp-function scheme, Zhang [32]
obtained analytical results for FDEs [31]. This method has been then employed to find pe-
riodic, solitary wave and compact like solutions for Klein-Gordon equation [33], Maccari’s
system [34], Broer Kaup system [35], combined KdV and mKdV equation [36], Toda lattice
equation [37]. It was noted that choosing special parameters in exp-function approach,
one can derive better solutions than those obtained by the existing schemes. Using re-
sults of [32], S. Zhang and H. Zhang [38] proposed the fractional sub-equation method.
Based on the modified Riemann-Liouville derivatives [39–41], the homogeneous balance
principle [42] and symbolic calculation, this approach allows to find analytic solutions of
non-linear fractional problems. In the present work, we utilise the generalised exp(−Φ(ξ))-
expansion method [14, 46] and an improved fractional sub-equation scheme [47, 48] to
derive the exact traveling wave solution of the space-time fractional equation [5,43] of the
fifth order:

Dαt u+ 45u2Dβx u+ 15Dβx uD2β
x u+ 15uD3β

x u+ D5β
x u= 0, 0< α,β ≤ 1. (1.1)

For α= 1,β = 1 this is the popular unidirectional nonlinear Sawada-Kotera equation stud-
ied in Refs. [4, 7, 44, 45]. However, to the best of our knowledge, the above mentioned
methods have not been applied to the Eq. (1.1). On the other hand, the traveling wave so-
lutions of this equation have been obtained by (G′/G)-expansion method [49], tanh-sech
method [50] and Chebyshev wavelet method [51].

In Section 2, definitions related to the modified Riemann-Liouville derivative are given.
Some details of the improved fractional sub-equation technique and generalised
exp(−Φ(ξ))-expansion method are presented in Section 3. Section 4 deals with exact trav-
eling wave solutions of the Eq. (1.1). Our conclusions are in Section 5.

2. Preliminaries

Let us recall the Jumarie modification of the Riemann-Liouville derivative

g(α)(x) := lim
h→0
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of order α. According to Ref. [38], derivative (2.1) can be represented in the form
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(x−ξ)−α−1[g(ξ)− g(0)]dξ, if α < 0,
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(x−ξ)−α[g(ξ)− g(0)]dξ, if 0< α < 1,
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, if n≤ α < n+ 1, n≥ 1.


