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Abstract. Subspace projection methods based on the Krylov subspace using powers of a

matrix A have often been standard for solving large matrix computations in many areas

of application. Recently, projection methods based on the extended Krylov subspace

using powers of A and A−1 have attracted attention, particularly for functions of a matrix

times a vector and matrix equations. In this article, we propose an efficient algorithm

for constructing an orthonormal basis for the extended Krylov subspace. Numerical

experiments indicate that this algorithm has less computational cost and approximately

the same accuracy as the traditional algorithm.
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1. Introduction

In this article, we investigate relevant subspaces and algorithms for constructing or-

thonormal bases used in subspace projection methods. These methods are commonly used

in large matrix computations associated with linear systems Ax = b, eigenvalue problems

Ax= λx, functions of a matrix times a vector f (A)b and matrix equations AX+X B+C = O.

Subspace projection methods reduce large dimensional matrix computations into smaller

dimensional matrix computations, in a wide variety of large scale simulations from several

areas of application.

Subspace projection methods involve constructing a given type of subspace, and then

computing approximate solutions using the constructed subspace. The efficiency of a sub-

space projection method is largely dependent on the subspace used. There are two con-

ditions to achieve high performance: 1) the solution of the target problem must be well
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approximated on a small dimensional subspace; and 2) the efficient construction of an

orthonormal basis should be possible.

One of the most successful subspaces used in subspace projection methods where A ∈
C

n×n,b ∈ Cn is the Krylov subspace, which involves powers of the matrix A as follows:

Km(A,b) := span{b,Ab, · · · ,Am−1b} . (1.1)

State-of-the-art algorithms for solving linear systems and eigenvalue problems are largely

based on the Krylov subspace (1.1), which has also been actively studied for the more

complicated matrix computations arising with functions of a matrix times a vector and

matrix equations — e.g. see. Refs. [7,12,13].

Druskin & Knizhnerman [2] proposed an alternative to the Krylov subspace — viz. the

extended Krylov subspace, involving not only powers of A but also of A−1 and defined by

EKm(A,b) := span{b,A−1b,Ab,A−2b, · · · ,Am−1b,A−mb} , (1.2)

where A is assumed to be nonsingular. This extended Krylov subspace has since received

much attention in computations for functions of a matrix times a vector and matrix equa-

tions, because it can generally approximate solutions with higher accuracy than the Krylov

subspace [5,6,8,15,16]. The extended Krylov subspace generally shows good convergence

behaviour. However, multiple linear systems must be solved in order to construct its or-

thonormal basis, and this is the most time consuming step. Here we analyse characteristics

of the linear systems that arise in the construction of the basis, and then propose a novel

and more efficient algorithm for constructing an orthonormal basis of the extended Krylov

subspace. The efficiency of our proposed algorithm is also evaluated in a series of numer-

ical experiments. Throughout this article, V and W are subspaces and V+W is their sum

— i.e. V+W := {v +w|v ∈ V,w ∈ W}. The MATLAB colon notation is used, where for

example A(:, i) denotes the i-th column of a matrix A.

In Section 2, we briefly introduce the extended Krylov subspace and basic algorithm

concepts used in constructing its orthonormal basis. In Section 3, we propose an efficient

algorithm for constructing the basis of the extended Krylov subspace via an analysis of the

characteristics of the arising linear systems. In Section 4, we evaluate the efficiency of our

proposed algorithm in a series of numerical experiments. Our conclusions are summarized

in Section 5.

2. The Extended Krylov Subspace and its Orthonormal Basis

As shown in Algorithm 2.1 below, subspace projection methods for large matrix compu-

tations consist of two steps: 1) constructing a subspace; and 2) computing an approximate

solution. It is notable that the dimension of the subspace ek := dimLk is not always equiva-

lent to the number of iterations k.

When the target problem has a vector solution (as is the case for linear systems, eigen-

value problems, and functions of a matrix times a vector), the approximate solutions
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Algorithm 2.1 The subspace projection method

1: for k = 1,2, · · · , until convergence do

2: Construct the kth subspace Lk such that Lk−1 ⊂ Lk, and its basis vectors Vk.

3: Compute the kth approximate solution based on Vk.

4: end for

xk ∈ C
n obtained from the subspace projection methods are described by linear combi-

nation of the basis vectors — i.e. xk = Vkyk, where Vk ∈ C
n×ek is the matrix with its

columns the basis vectors and yk ∈ C
ek the vector with the corresponding coefficients of

the linear combination as its entries. On the other hand, when the problem has a square

matrix solution (as with matrix equations), the approximate solutions Xk are generally

constructed from low rank matrices — i.e. Xk = VkYkV H
k

involving a matrix coefficient

Yk ∈ C
ek×ek. Incidentally, the vectors yk and matrices Yk are usually determined by some

kind of minimisation or Galerkin-type condition. In the following subsections, we briefly

describe the extended Krylov subspace and then present the algorithms traditionally used

for constructing the orthonormal basis.

2.1. Brief introduction to the extended Krylov subspace

The extended Krylov subspace EKm(A,b) defined by (1.2) can be regarded as the sum

of the two Krylov subspaces involving A and A−1, respectively — i.e.

EKm(A,b) = Km(A,b) +Km(A
−1,A−1b) .

The extended Krylov subspace EKm(A,b) satisfies

EKm−1(A,b)⊂ EKm(A,b)

and dim EKm(A,b) ≤ 2m. The enhanced efficiency of the extended Krylov subspace for

various matrix computations has been widely reported [2, 5, 6, 8, 15, 16], and detailed

convergence analyses can be found in Refs. [2, 8, 9]. Since the extended Krylov subspace

EKm(A,b) consists of powers of both A and A−1, it can well approximate both the inner and

outer spectrum, which implicitly leads to the better convergence in the extended Krylov

subspace than for the traditional Krylov subspaces Km(A,b) or Km(A
−1,A−1b) when solving

large matrix computations.

2.2. Traditional algorithms to construct the orthonormal basis

Druskin & Knizhnerman [2] introduced an algorithm to construct the orthonormal

basis of the extended Krylov subspace EKm(A,b) in the case of Hermitian matrices A. Si-

moncini [15] extended and improved this algorithm, to provide what is now regarded as

the standard algorithm for general matrices.
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Algorithm 2.2 The Arnoldi/Lanczos procedure

Input: A∈ Cn×n and b ∈ Cn

Output: The orthonormal basis Vm ∈ C
n×m of Km(A,b) s.t. V H

m Vm = I

1: Set v1 = b/‖b‖2, V1 = v1

2: for j = 1,2, · · · , m− 1 do

3: w j = Av j

4: bw j ← orthogonalise w j w.r.t. Vj

5: v j+1 = bw j/‖ bw j‖2
6: Vj+1 = [Vj ,v j+1]

7: end for

Algorithm 2.3 Simoncini’s algorithm [15]

Input: A∈ Cn×n and b ∈ Cn

Output: The orthonormal basis Vm ∈ C
n×2m of EKm(A,b) s.t. V H

mVm = I

1: Set W0(:, 1) = b,W0(:, 2) = A−1b.

2: Set V1 = orth(W0),V1 = V1

3: for j = 1,2, · · · , m− 1 do

4: Compute Wj(:, 1) = AVj(:, 1) and Wj(:, 2) = A−1Vj(:, 2)

5: cWj ← orthogonalise Wj w.r.t. V j

6: Vj+1 = orth(cWj)

7: V j+1 = [V j, Vj+1]

8: end for

The matrix Vm ∈ C
n×m, with columns the orthonormal basis of the Krylov subspace

Km(A,b), can be constructed by the Arnoldi/Lanczos procedure (Algorithm 2.2). The or-

thogonalisation in Step 4 of Algorithm 2.2 is undertaken by short-term or long-term re-

currence for the Hermitian or non-Hermitian matrix A, and generally based on the Gram-

Schmidt method — e.g. see Ref. [12]. On the other hand, if Vm ∈ C
n×2m denotes the

matrix with columns the orthonormal basis of the extended Krylov subspace EKm(A,b),

then Simoncini’s algorithm constructs Vm by the block version of the Arnoldi/Lanczos type

procedure with two initial vectors b and A−1b (Algorithm 2.3). Here the function “orth” in

Algorithm 2.3 denotes the orthogonalisation of the matrix.

The computation of W0(:, 2) = A−1b and Wj(:, 2) = A−1Vj(:, 2) in Algorithm 2.3 can be

undertaken by solving linear systems of form

AW0(:, 2) = b and AWj(:, 2) = Vj(:, 2) , j = 1,2, · · · , m− 1 , (2.1)

usually by a direct method for a small and dense A and by a (preconditioned) Krylov

subspace method for a large and sparse A [15].
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3. An Efficient Algorithm to Construct the Orthonormal Basis

As mentioned in Section 2, Simoncini’s algorithm (Algorithm 2.3) requires that we

solve m linear systems (2.1) sequentially in order to construct the orthonormal basis Vm of

the extended Krylov subspace EKm(A,b). When the matrix A is large and sparse, we must

construct m different Krylov subspaces and their bases in order to solve m different linear

systems (2.1), the most time consuming aspect. In this section, we first analyse the charac-

teristics of the linear systems (2.1) that arise when constructing the basis of the extended

Krylov subspace. A novel algorithm is then proposed to construct the orthonormal basis,

by projecting the approximate solutions of all linear systems (2.1) onto the same subspace.

3.1. Analysis of characteristics of the extended Krylov subspace

A basic property of the Krylov subspace is given in the following proposition [12,17].

Proposition 3.1. Let d := d(A,b) be the grade of b with respect to A such that

d := d(A,b) :=min{k|Pk(A)b= 0, Pk(λ) ∈ Pk, Pk(0) = 1} ,

where Pk denotes set of k-degree polynomials. Then Kd(A,b) is a (minimum) A-invariant

subspace, and

AKd(A,b) = Kd(A,b) = A−1Kd(A,b) (3.1)

is satisfied. Also, if Vd ∈ C
n×d is the matrix with its columns the orthonormal basis of Kd(A,b),

then

V H
d AVd = Hd , AVd = Vd Hd ,

is the matrix form of the Arnoldi procedure.

From Proposition 3.1, characteristics of the linear systems (2.1) that arise when con-

structing the basis of the extended Krylov subspace are identified as follows.

Proposition 3.2. If d := d(A,b) be the grade of b with respect to A, then

EKm(A,b)⊆ Kd(A,b)

is satisfied.

Proof. From (3.1) in Proposition 3.1, we have

Akb ∈ AkKd(A,b) = Kd(A,b) , ∀k ∈ Z .

hence we have the result from the definition of the extended Krylov subspace.

From Proposition 3.2, all solutions Wj(:, 2), j = 0,1, · · · , m − 1 for the linear sys-

tems (2.1) can be obtained mathematically by projection onto the same Krylov subspace

Kd(A,b). Moreover, based on Proposition 3.2 we also have the following theorem for the

relationship between the orthonormal basis Vm of the extended Krylov subspace EKm(A,b)

and the orthonormal basis Vd of the Krylov subspace Kd(A,b).
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Theorem 3.1. Let d := d(A,b) be the grade of b with respect to A, and let Vd ∈ C
n×d be the

matrix with its columns the orthonormal basis of the Krylov subspace Kd(A,b). Then

EKm(A,b) = VdEKm(Hd ,βe1) ,

where

Hd = V H
d AVd ∈ C

d×d , e1 = [1,0, · · · , 0]T ∈ Rd , β = ‖b‖2 .

Proof. From Proposition 3.2, Akb for k = −m,−(m−1), · · · , m−1 can be written as the

linear combination of the orthonormal basis of the Krylov subspace Kd(A,b):

Akb= Vdy
(k)

d
, k = −m,−(m− 1), · · · , m− 1 ,

where y
(k)

d
∈ Cd . Now from b = Vd(βe1) and AVd = Vd Hd the vector y

(k)

d
can be rewritten

as

y
(k)

d
= V H

d AkVd(βe1) = Hk
d(βe1) .

Consequently,

EKm(A,b) =span
¦

A−mb,A−(m−1)b, · · · ,Am−1b
©

=span
n

Vd H−m
d
(βe1), Vd H

−(m−1)

d
(βe1), · · · , Vd Hm−1

d
(βe1)
o

=Vd span
n

H−m
d
(βe1), H

−(m−1)

d
(βe1), · · · , Hm−1

d
(βe1)
o

=VdEKm

�
Hd , (βe1)
�

.

3.2. Proposal for an efficient algorithm

From Theorem 3.1 in the previous subsection, the orthonormal basis Vm of the ex-

tended Krylov subspace can be constructed by multiplying the two orthonormal bases —

i.e.

Vm = VdVd,m , (3.2)

where Vd corresponds to the Krylov subspace Kd(A,b) and Vd,m to the extended Krylov

subspace EKm(Hd ,βe1) with the Hessenberg matrix Hd := V H
d

AVd and βe1. Based on

Eq. (3.2), we now propose the novel algorithm to construct the orthonormal basis.

The Vm can be constructed via the Krylov subspace Kd(A,b) as in Algorithm 3.1, where

the main feature is that the coefficient matrix of the linear systems is not A but the Hes-

senberg matrix Hd . Simoncini’s algorithm (Algorithm 2.3) requires that we solve m linear

systems (2.1) with A for constructing Vm, whereas on using Algorithm 3.1 we can construct

Vm by solving m linear systems with Hd . Since Hd is the upper Hessenberg matrix (or the

tridiagonal matrix for a Hermitian A), linear systems with Hd can be solved efficiently by a

direct method (such as the Givens-rotation method).
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Algorithm 3.1 A theoretical version of a proposed algorithm

Input: A∈ Cn×n and b ∈ Cn

Output: The orthonormal basis Vm ∈ C
n×2m of EKm(A,b) s.t. V H

mVm = I

1: Run the Arnoldi/Lanczos procedure (Algorithm 2.2) for Kd(A,b),

and get the orthonormal basis Vd and Hd = V H
d

AVd ,β = ‖b‖2
2: Run the Simoncini’s algorithm (Algorithm 2.3) for EKm(Hd ,βe1),

and get the orthonormal basis Vd,m

3: Compute Vm = VdVd,m

Algorithm 3.2 A practical version of the proposed algorithm

Input: A∈ Cn×n and b ∈ Cn

Output: The orthonormal basis Vm ∈ C
n×2m of EKm(A,b) s.t. V H

mVm = I

1: Run the Arnoldi/Lanczos procedure for Kk(A,b) until A−1b is converged,

and get the orthonormal basis Vk and Hk = V H
k

AVk,β = ‖b‖2
2: Run Simoncini’s algorithm (Algorithm 2.3) for EKm(Hk,βe1),

and get the orthonormal basis Vk,m

3: Compute Vm = VkVk,m, if required

Unfortunately, it is difficult to know the grade d and to compute the orthonormal basis

Vd for general matrices A, so we propose a more practical version (Algorithm 3.2). Thus

instead of Eq. (3.2), Algorithm 3.2 is based on the approximation

Vm ≈ VkVk,m , (3.3)

where Vk is the matrix with its columns the orthonormal basis of Kk(A,b), and Vk,m is a

matrix with its columns the orthonormal basis of EKm(Hk,βe1) and Hk := V H
k

AVk.

Let us consider the validity of the approximation (3.3) for Algorithm 3.2. From the

definition of the extended Krylov subspace and Theorem 3.1, the orthonormal basis Vm

can be written

Vm = F(A,b) :=
�

f1(A)b, f2(A)b, · · · , f2m(A)b
�

, (3.4)

using functions of a matrix times a vector. Here, it is known that functions of a matrix

times a vector f (A)b can be approximated in the Krylov subspace Kk(A,b):

f (A)b≈ Vk f (Hk)V
H

k b= Vk f (Hk)(βe1) (3.5)

— cf. Ref [7] and references therein. From Eqs. (3.4) and (3.5), a matrix Vm can therefore

be well approximated in the Krylov subspace Kk(A,b) as follows:

Vm ≈
�

Vk f1(Hk)βe1, Vk f2(Hk)βe1, · · · , Vk f2m(Hk)βe1

�

=VkF
�
Hk, (βe1)
�

=VkVk,m ,
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Table 1: The main computational costs and storage requirements of Simoncini’s algorithm

and the proposed algorithm for a non-Hermitian A.

(a) explicit computation of Vm

linear systems misc. main storage

for A [times] for Hk [#flops] [#flops]

Algorithm 2.3 m 0 8nm2 2nm

Algorithm 3.2 1 1

2
k2m 8km2 + 4nkm 2nm+ kn+ 2km

(b) approximation of a vector on EKm(A,b): xm = Vmym

linear systems misc. main storage

for A [times] for Hk [#flops] [#flops]

Algorithm 2.3 m 0 8nm2+ 4nm 2nm

Algorithm 3.2 1 1

2
k2m 8km2 + 2nk+ 4km kn+ 2km

supporting the validity of (3.3) in terms of approximating functions of a matrix times a

vector in the Krylov subspace.

Various stopping criteria for the Arnoldi/Lanczos procedure could be used in Step 1 of

Algorithm 3.2. For the computations described in this article, the accuracy of approxima-

tion for the linear system AW0(:, 2) = b was adopted, reflecting the fact that Simoncini’s

algorithm approximately solves the linear system for a large and sparse A. It is notable

that the iterative solver for AW0(:, 2) = b is limited to the FOM method [11] or the GMRES

method [14] without preconditioners (or the D-Lanczos method [12, Algorithm 6.17] for

a Hermitian A), given the necessity for explicit computation of Hk.

From a practical standpoint, we do not always require that Vm be computed explicitly

in Step 3 of the algorithm. Thus when used to approximate a vector on EKm(A,b) such as

xm = Vmym, we can compute xm as

xm = Vmym = Vk(Vk,mym) , (3.6)

without explicit computation of Vm. Avoiding explicit computation of Vm often leads to a

significant reduction in computational cost for solving several matrix computations.

Table 1 shows the main computational costs and storage requirements without the

coefficient matrix A of Simoncini’s algorithm and the proposed algorithm. The figures in

Table 1(a) are for the explicit computation of Vm, and the figures in Table 1(b) are for the

approximation of a vector without computation of ym, where Vm is not explicitly computed

— cf. Eq. (3.6). The storage requirements of the proposed algorithm can be reduced by

a recalculation of Vk in Step 3, especially for a Hermitian A, in return for increasing the

number of linear systems for A from 1 to 2.
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4. Numerical Experiments and Results

The relative performance of the proposed algorithm (Algorithm 3.2) and Simoncini’s

algorithm (Algorithm 2.3) was compared as follows. In Section 4.1, the accuracy of the

extended Krylov subspace EKm(A,b) constructed by both algorithms is considered, for sym-

metric and nonsymmetric model problems. In Section 4.2, we apply both algorithms to

matrices obtained from the University of Florida Sparse Matrix Collection [1], and then

compare their computation times required for constructing Vm. In Section 4.3, we evalu-

ate the efficiency of both algorithms to functions of a matrix times a vector, in the case of

symmetric matrices.

All numerical experiments were carried out in double precision arithmetic on OS: Cen-

tOS (64bit), CPU: Intel Xeon X5550 2.67GHz (single core), Memory: 48GB, Compiler:

GNU Fortran ver. 4.1.2, Compile option: -O3.

4.1. Numerical experiment I

The two model problems for constructing Vm are as follows. The first problem is for a

diagonal matrix

Vm← EKm(A,b) , V H
mVm = I ,

A= diag(0.01,0.02, · · · , 1.00) , b = [1,1, · · · , 1]T ;
(4.1)

and the second is for an upper bidiagonal matrix with 0.1 superdiagonal entries

Vm← EKm(A,b) , V H
mVm = I ,

A= bidiag(d, 0.1) , d= [0.022, 0.042, · · · , 1.002] , b = [1,1, · · · , 1]T .
(4.2)

The proposed algorithm (Algorithm 3.2) and Simoncini’s algorithm (Algorithm 2.3), which

is based on the Krylov subspace method, were applied to both of these two problems. In

particular, the accuracy of the constructed subspaces for the principle angles cos(θi), i =

1,2, · · · , 2m was compared with the subspace constructed by Simoncini’s algorithm based

on a direct method.

Let P and Q be subspaces in Cn of dimension s, and let P,Q ∈ Cn×s be column orthog-

onal matrices with columns the orthonormal bases of P and Q, respectively. The principle

(or canonical) angles cos(θi) between the subspaces P and Q are thus

cos(θi) = σi(P
HQ) , i = 1,2, · · · , s ,

where σi(P
HQ) are the singular values of PHQ. It is notable that 0 ≤ cos(θi) ≤ 1, and in

the case of the principle angles that cos(θi) = 1 for all i. The constructed subspaces are

equivalent, but in the case of cos(θi) = 0 for all i the subspaces are orthogonal — e.g. see

Ref. [3].

For the iterative solver of Step 1 in the proposed algorithm, the D-Lanczos method

was used for the model problem (4.1) with a symmetric A, and the FOM method for the
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Figure 1: Graphs of the principle angles cos(θi), i = 1,2, · · · , 2m for the model problem

(4.1).

model problem (4.2) with a nonsymmetric A. The CG method [4] and the FOM method

were used to solve each linear system in Simoncini’s algorithm for the model problems

(4.1) and (4.2), respectively. With EKm(A,b) when m = 10,20, for the CG method, the D-

Lanczos method and the FOM method the stopping criteria were set at a relative residual

2-norm less than ǫ, where ǫ = 10−4, 10−8, 10−12. The initial approximate solution of all of

the linear systems was set to be the zero vector [0,0, · · · , 0]T.

Numerical results are shown for the model problem (4.1) in Fig. 1, and for the model

problem (4.2) in Fig. 2. For both problems, the principle angles corresponding to both

algorithms are cos(θi) ≈ 1 for m = 10,ǫ = 10−12 — cf. Fig. 1 (e) and 2 (e). Thus with

ǫ = 10−12 each algorithm can accurately construct the extended Krylov subspace EKm(A,b)

when m = 10. From Fig. 1 and 2, it is evident that some part of the principle angles
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(f) m= 20,ǫ = 10−12

Figure 2: Graphs of the principle angles cos(θi), i = 1,2, · · · , 2m for the model problem

(4.2).

becomes cos(θi) 6≈ 1 as the stopping criterion increases. Deteriorating accuracy appears

more prominently when m = 20.

The proposed algorithm was then compared with Simoncini’s algorithm using the CG

method, where Simoncini’s algorithm showed higher accuracy for ǫ = 10−4 and 10−8. On

the other hand, for ǫ = 10−12 both algorithms constructed the extended Krylov subspace

with approximately the same accuracy.

4.2. Numerical experiment II

In this subsection, we apply Simoncini’s algorithm and the proposed algorithm to ma-

trices obtained from the University of Florida Sparse Matrix Collection, in constructing
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Table 2: Characteristics of the test matrices for Simoncini’s algorithm and the proposed

algorithm.

(Type) Matrix name n N nz Ave.N nz Application area

(S) BCSSTK27 1224 56126 45.85 Structural problem

(S) CRYSTM01 4875 105339 21.61 Materials problem

(S) KUU 7102 340200 47.90 Structural problem

(S) FV1 9604 85264 8.88 2D/3D problem

(N) ADD20 2395 17319 7.23 Circuit simulation

(N) POISSON3DA 13514 352762 26.10 Computational fluid dynamics

(N) SHERMAN4 1104 3786 3.43 Computational fluid dynamics

(N) RAEFSKY1 3242 294276 90.77 Computational fluid dynamics

orthonormal bases for the extended Krylov subspaces. Their computation times are then

compared.

The characteristics of the test matrices are shown in Table 2. Here (S) and (N) re-

spectively denote real symmetric and real nonsymmetric matrices, and n, N nz and Ave.

N nz respectively denote the dimension, the number of nonzero elements and the average

nonzero elements per row or column.

For the iterative solver in Step 1 of the proposed algorithm, we used the D-Lanczos

method for the symmetric matrices, and the FOM method for the nonsymmetric matrices.

The ICCG method [10] (the CG method with the IC(0) preconditioner) and the BiCGSTAB

method [18] with the ILU(0) preconditioner [10] were used to solve the linear systems

in Simoncini’s algorithm for symmetric and nonsymmetric matrices, respectively. For the

proposed algorithm, we explicitly constructed Vm and recalculated Vk in Step 3, and set m

of EKm(A,b) as m= 1,2, · · · , 50 and b = [1,1, · · · , 1]T. The stopping criterion of the linear

solvers was set at the relative residual 2-norm less than 10−10. The initial approximate

solution of all of the linear systems was set to be the zero vector [0,0, · · · , 0]T.

Fig. 3 shows the computation times for m = 1,2, · · · , 50. When based on the direct

method, Simoncini’s algorithm first decomposes the coefficient matrix A and so requires a

long computation time even for a small m, but especially for large problems — cf. KUU, FV1

and POISSON3DA. Conversely, it shows a relatively small increase of computation time for

different m. However, when Simoncini’s algorithm is based on the iterative method, Vm can

be constructed within a comparatively shorter computation time for a small m. — although

the computation time increases directly with m, because the most time-consuming aspect

of Simoncini’s algorithm involves solving m linear systems (2.1), as seen in Table 1.

The proposed algorithm needs to solve the linear system for A in Step 1 without pre-

conditioners, because it must directly compute Hk. In the case of a small m, it therefore

has a longer computation time than Simoncini’s algorithm using the preconditioned Krylov

subspace method. However, in contrast to Simoncini’s algorithm, the main computational

costs of the proposed algorithm arise from solving 1 or 2 linear systems for A independent

of m, so there a very small increase of computation time with m. Consequently, in the case
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Figure 3: Computation time for m = 1,2, · · · , 50.

of a large m, the proposed algorithm can construct Vm with minimal computation time for

many matrices.
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Figure 4: The relative error vs. m for solving the function of a matrix times a vector.

4.3. Numerical experiment III

In this subsection, the function of a matrix times a vector

x= f (A)b , A∈ Rn×n, x,b ∈ Rn ,

f (λ) = 1/
p
λ , b = [1,1, · · · , 1]T ,

(4.3)

is computed by projection onto the extended Krylov subspace — thus

x ≈ xm = Vm f (Hm)βe1 ,

where Hm := V T
mAVm can be efficiently computed using Simoncini’s algorithm as in the

Arnoldi procedure [15] and β = ‖b‖2. The computation efficiency of the proposed algo-

rithm was compared with Simoncini’s algorithm for computing (4.3). For the test matrices,

we used the real symmetric matrices shown in Table 2 — i.e. BCSSTK27, CRYSTM01, FV1

and KUU.

For the iterative solver in Step 1 of the proposed algorithm, we used the D-Lanczos

method. We also used the ICCG method to solve each of the linear systems of Simoncini’s

algorithm. For the proposed algorithm, we computed xm by Eq. (3.6) instead of explicitly

constructing Vm. Vk was recalculated in Step 3.

The stopping criterion of the linear solvers was set at a relative residual 2-norm less

than 10−10. The initial approximate solution of all of the linear systems was again set to

be the zero vector [0,0, · · · , 0]T.
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Table 3: Convergence results of Simoncini’s algorithm and the proposed algorithm.

Matrix name Simoncini(Ch) Simoncini(CG) Proposed

m time [sec.] m time [sec.] m time [sec.]

BCSSTK27 57 4.33× 10−1 57 6.25× 10−1 46 3.14× 10−1

CRYSTM01 16 2.06× 101 16 8.23× 10−2 16 5.30× 10−2

FV1 8 1.54× 102 8 7.50× 10−2 8 1.90× 10−2

KUU 29 6.42× 101 30 4.30× 100 27 8.35× 10−1

Fig. 4 shows the relative error ‖x∗ − xm‖2/‖x
∗‖2 for each m, where x∗ is the exact

solution of function (4.3) as computed from the eigenvalue decomposition of A. We also

show the computation time and m satisfying ‖x∗ −xm‖2/‖x
∗‖2 ≤ 10−10 in Table 3.

From Fig. 4, we see that the proposed algorithm shows approximately the same con-

vergence behaviour as does the Simoncini’s algorithm despite less accuracy, as noted in

Section 4.1. For BCSSTK27 in particular, the proposed algorithm shows better convergence

behaviour. As shown in Table 3, given approximately the same convergence behaviour and

the smaller computational costs for constructing the basis, the proposed algorithm com-

putes function (4.3) with a much shorter computation time than Simoncini’s algorithm.

5. Conclusions

The characteristics of the linear systems arising from the construction of a basis for

the extended Krylov subspace is analysed in this article, and an efficient algorithm for

constructing an orthonormal basis of the extended Krylov subspace proposed.

From a series of numerical experiments, we conclude that the proposed algorithm can

construct the orthonormal basis Vm of the extended Krylov subspace EKm(A,b) within a

shorter and less m-dependent computation time than Simoncini’s algorithm. In addition,

while our numerical results indicate that the accuracy of our proposed algorithm is some-

what reduced in terms of principle angles, this does not greatly influence the efficiency in

solving a function of a matrix times a vector.

In future work, the relationship between the accuracy of the proposed algorithm and

Simoncini’s algorithm using iterative methods may be investigated, and the efficiency in

solving a wide variety of large matrix computations explored.
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