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Abstract. Computational scientists generally seek more accurate results in shorter times,

and to achieve this a knowledge of evolving programming paradigms and hardware is

important. In particular, optimising solvers for linear systems is a major challenge in sci-

entific computation, and numerical algorithms must be modified or new ones created to

fully use the parallel architecture of new computers. Parallel space discretisation solvers

for Partial Differential Equations (PDE) such as Domain Decomposition Methods (DDM)

are efficient and well documented. At first glance, parallelisation seems to be inconsis-

tent with inherently sequential time evolution, but parallelisation is not limited to space

directions. In this article, we present a new and simple method for time parallelisation,

based on partial fraction decomposition of the inverse of some special matrices. We dis-

cuss its application to the heat equation and some limitations, in associated numerical

experiments.
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1. Introduction

A major challenge in scientific computing is to decrease the time required in numerical

simulations. To achieve this, algorithms and scientific software must be adapted to fit new

computer architectures, often involving parallel programming paradigms. Parallelism is

not a new topic in the High Performance Computing (HPC) community, but it has become

important for all programmers from the beginning of the century when there were maybe

2 cores per processor, for there are typically 12 cores already and some 60− 80 cores are

expected in the near future.

The Domain Decomposition Method (DDM) is an efficient approach to parallelisation

in spatial directions, where the whole domain is subdivided to produce efficient iterative
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and independent solutions of smaller problems on the resulting subdomains. Correction

steps are necessary to propagate information from one subdomain to others. However, the

time direction is also a candidate for parallelisation. In 1964, Nievergelt [1] introduced a

parallel algorithm based on time decomposition, and a few years later Miranker et al. [2]
defined a parallel solver based on a predictor-corrector scheme. Ref. [7] describes the state

of the art on time parallel integration.

In Section 2, we present our Partial Differential Equation (PDE) solver involving time

parallelisation, where the original linear system is split into uncoupled linear systems to be

solved separately. Our method falls in the category of “Direct Parallel Time Integration” —

cf. Refs. [3,5]. We eventually discuss its application to the two-dimensional heat equation

in Section 3 and some limitations of our method in Section 4, and make brief concluding

remarks in Section 5.

2. Parallel Computation for Linear Systems

Let (Ai)
m
i=1

be a collection of m nonsingular real matrices of size n× n and set

X = A1 · · ·Am .

We are interested in the following problem: how to compute quickly the solution x ∈ Rn

of the linear system

X x = y , (2.1)

where y ∈ Rn is any given vector?

Sequential approach. One should automatically eliminate the computation of the prod-

uct of all m matrices before solving the linear system, since this is very expensive (requires

a large computational time). Let us recall that solving a generic n × n linear algebraic

system by Gauss elimination (n large) requires n3/3 + O (n2) operations. (For simplicity,

we only take into account multiplications and divisions, neglecting additions and subtrac-

tions.) The product of two matrices of size n× n involves n3 operations, so computation

of the product X above requires mn3 multiplications. The following algorithm is a sensible

sequential computation of the solution:

• compute the vector x1 ∈ Rn such that A1 x1 = y ;

• then compute x2, the solution of A2 x2 = x1 ;

• . . .

• and ultimately compute xm = x , the solution of Am xm = xm−1 .

Remark 2.1. The computing cost of this algorithm is m times the computing cost of solving

one linear system — i.e. mn3/3 operations.


