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Abstract. A robust residual-based a posteriori error estimator is proposed for a weak
Galerkin finite element method for the Stokes problem in two and three dimensions.
The estimator consists of two terms, where the first term characterises the difference
between the L2-projection of the velocity approximation on the element interfaces and
the corresponding numerical trace, and the second is related to the jump of the velocity
approximation between the adjacent elements. We show that the estimator is reliable
and efficient through two estimates of global upper and global lower bounds, up to two
data oscillation terms caused by the source term and the nonhomogeneous Dirichlet
boundary condition. The estimator is also robust in the sense that the constant factors
in the upper and lower bounds are independent of the viscosity coefficient. Numerical
results are provided to verify the theoretical results.
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1. Introduction

Let © ¢ R? (d = 2,3) be a bounded polygonal or polyhedral domain. We consider the
following generalised Stokes problem: find the velocity u and the pressure p such that

—vAu+Vp=f inQ,
V-u=0 inQ,
u=g ondQ. 1.1

where v>0 denotes the viscosity coefficient, A denotes the Laplacian differential operator,
f € [L2(9)]¢ is the body force and g satisfies the compatibility condition fmg -n =0,
with n the unit outward vector normal to the boundary 9.

These equations describe steady viscous incompressible flow, and the development of
reliable and efficient a posteriori error estimators for finite element discretisations of this
problem has become an active research area in recent decades — cf. Refs. [1-4,7-11,13,14,
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16,18,19] and references therein. Specifically, two a posteriori error estimators have been
produced for the mini-element based on the residual of the finite element solution and the
solution of local problems [18], and related results can be found in Refs. [1,2]; a posteriori
error estimators were analysed for non-conforming finite element approximations [8,9,19],
discontinuous Galerkin methods [14, 16], and for dual mixed finite element methods [3,
10]; some unified framework for a posteriori error estimation for the Stokes problem based
on H'!-conforming velocity reconstruction and H(div)-conforming locally conservative flux
(stress) reconstruction has been provided [11]; and Refs. [4, 7] discuss a posteriori error
analysis for quasi-Newtonian fluid flows.

A weak Galerkin (WG) finite element method for the Stokes equations (1.1) in the
primary velocity-pressure formulation has been proposed [21]. The method uses a P /P;._;
(k > 1) discontinuous finite element combination for the velocity and pressure, with the
velocity element being enhanced by polynomials of degree k — 1 on the interface of the
finite element partition. The usual gradient and divergence operators are implemented as
distributions in properly-defined spaces.

Optimal-order error estimates were established for the corresponding numerical ap-
proximation in various norms. Refs. [5,22] provide another two classes of WG methods
for (1.1), and Ref. [23] presents a divergence-free WG method for quasi-Newtonian Stokes
flows. Ref. [6] carried out the first a posteriori error analysis of WG methods for diffu-
sion equations, where the residual type a posteriori error estimator is a combination of the
standard conforming Galerkin and mixed finite elements.

Here we develop a residual type a posteriori error estimator for the WG method in
Ref. [21] for the Stokes problem (1.1) in two and three dimensions. The a posteriori error
estimator for the velocity error plus the pressure error consists of two terms. The first
term characterises the difference between the L2-projection of the velocity approximation
on the element interfaces and the corresponding numerical trace, and the second term
is related to the jump of the velocity approximation between the adjacent elements. We
show that the estimator is reliable and efficient with two estimates of global upper and
global lower bounds, up to two data oscillation terms caused by the source term and the
nonhomogeneous Dirichlet boundary condition, and our a posteriori estimation is robust
with respect to the viscosity coefficient. The main tool of our analysis is the Helmholtz
decomposition for tensor fields.

In Section 2, we first provide some notation before proceeding to summarise the WG
scheme [21]. We present our a posteriori error estimator in Section 3, and discuss its reli-
ability and efficiency. Some relevant numerical results are produced in Section 4, and we
make some final remarks in Section 5.

2. Weak Galerkin (WG) Scheme

2.1. Notation

For any bounded domain D C R® (s = d,d — 1), let H"(D) and Hy'(D) denote the
m'" order Sobolev spaces on D, and || - llm,p> | - lm,p the corresponding norm and semi-
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norm, respectively. We use (,),,, p to denote the inner product of H™(D), and in particular
(,)p :=(,*)o,p. When D =, we abbreviate || - ||, := | lm0, | lm =1 [m,0, (1) := (:,)a;
and when D c R4™1, we replace (-, ), with (-,-)p. For an integer k > 0, P,(D) denotes the
set of all polynomials defined on D with degree no greater than k.

Let , = U{T} be a shape-regular simplicial decomposition of the polyhedral domain
Q2 with mesh size h := maxycg hy where hy is the diameter of T; and denote by 82 and
35 the sets of interior and boundary edges/faces of all elements in 7, respectively, and set
gy = e}? U eﬁ. Moreover, we define Pr(Z;,) := {v € L%(Q) : v|; € P(T), T € %}, and n
now denotes the unit outward normal vector to the boundary T for any T € &,. Given
a tensor function 7 € R?*? and a vector function v € R, for any two adjacent elements
T* and T~ € J, that share a common edge/face e € 32 (viz. e = Tt N T™) we denote by
v* and 7* the respective functions on the edge/face e taken from the interior of T*, and
likewise appropriately write n* to denote the unit outward normal vector on e exterior to
T*. Jumps in quantities along e may be defined as

[onl. := (vn)| .y,  + (F0)| e py

[v]. :=v|r+ne—Vlr-ne- 2.1

We also adopt the usual notation ‘x’ to denote the vector product of two vectors in R?, such
that for v = (v, -+, v4)" and w = (wq,---,wy)" (where t denotes the transpose) we have

VI Wy — VW ford =2
VXW = 172 "2 " ? (2.2)
(vaw3 — v3wy, v3wy — VW3, v Wy —vawy)  ford =3,

and for the vector v € R? and the tensor T =[74,---,74]" € R¥*? we define

vxTi=[vxTy, v x74]".
In addition, we have
=Gy 911 _
Curl V= |: _82'1)2 31 Uy for d =2 ?
V X ford =3,
where V =(d;,-++,3d;)" is the gradient operator; and the Green formula

(nx7,0);,p=(Vx7,0),+(7,curl 8),

where 0 denotes either a vector function in R? or a tensor function in R®*3. We use
V;, and V- to denote the piecewise gradient and divergence operators with respect to
the triangulation j,, respectively. Finally, we also introduce the “broken” Sobolev space
H™Z):={ve L?(Q): v|y € HY(T),T € J,}, with inner products and norms defined as
follows: for any scalar w, v € H™(J},),

2 2
W, 0)g = D (W), (Wl = > w2,

TeT, TeZ,
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2 2
(w,0)or, == D (wvdar, IWIZ op o= D Wl 57,
TeT, TeZ,

with analogous definitions for vectors and tensors. Throughout, X < Y means X < CY,
where C is a positive constant independent of the mesh size h and viscosity coefficient v.

2.2. WG scheme.

For any e € ¢y, we let Q’g |, be the L2-projection from [L?(e)]? onto [P,(e)]¢, and define
discrete weak function spaces for any integer k > 0 — viz.

Vi := {o = {0, 05} 00l7 € [Prsa (1)1, 0yl € [P, VT € ¢ € €, v, = Qg on 992},
V2 = {v = {vy, v} 1 vl7 € [Prya(T)1%, vpl, € [Pr(e)]%, VT €Ty e € €7, v,=0 on 00},
Wy :={q € L2(Q):qly € P(T), VT € Z,}.
We follow Ref. [21] in now defining the discrete weak gradient and divergence operators.
Definition 2.1. For any v, = {vg,vp} € V}, or Vho, the weak gradient Vv, is defined as
follows: for any T € &, (V,,v)|7 € [Pc(T)]9*¢ satisfies the equation
(Vi Tidr = (vp, Tant)ar — (v0, Ve Ti)r, Vg € [P(T)]1Y, (2.3)
where n denotes the unit outward normal vector along JT.
Definition 2.2. For any v, = {vy, v,} € V}, or Vho, the weak divergence V- vy, is defined as
follows: for any T € %, (V- v,)|r € Pr(T) satisfies the equation
(Vo vn, widr = (vp, win)or — (v, Vwi )y, Vwy € Pi(T). 2.4
The weak gradient (WG) finite element method is then as follows. Find u, ={ugy,u,} €V,
and p; € W, such that
a(up, v,) = b(vp, pp) = (f, %), Vo, = {vg, v} €V, (2.5)
b(uy,q) =0, YgeWw,, (2.6)
where

a(up, vp) := WV up, V,,v1) g, + VZ W (Qjuo —up, Qo — vp)or
TeZ,

b(vhz CI) = (VW Uh, q)% .

As shown in Ref. [21], the solution (uy, py) of Egs. (2.5) and (2.6) exists and is unique, and
the following theorem on a priori error estimates holds.

Theorem 2.1. Assume that (u,p) € [H*"2(Q)]¢ x H**1(Q) and (uy, p) € Vi, x W, are the
solution of the Stokes problem (1.1) and the discrete solution of the weak Galerkin scheme
(2.5)-(2.6), respectively. Then

llu —upllo < CH**?(Julrg + IPlrs1)s
llp —pallo < Chk+1(|u|k+2 + |P|k+1),

where the positive constant C is independent of the mesh size h.
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3. A Posteriori Error Estimation

For the weak solution (u,p) of the Stokes problem (1.1) and the discrete solution
(up, py) with uy, = {ug,up} of the WG scheme (2.5)-(2.6), we define the error e, and
the residual-based a posteriori error estimator 7, such that

e = YIVu = V,uy |13 + vIIVu — Vyuoll5 + v Hip—pally » (3.1)

My =Myp+ N3h (3.2)
where

2 —1)1nk 2 2 . -1 2
Moy = "Z h 1Qpuo _ubHO,BT’ Nyn = ”Z h, ||Je(u0)||0,e,

TeT, e€ey
3. (uo) [ug], foree 82 ,
ug) =
e o u,—g foree elf .

We also identify oscillation terms in both the source term f and the nonhomogeneous
Dirichlet boundary data g. Let Qé“ be the L2-projection from [L?(£2)]¢ onto [Pk+1(9h)]d,
and denote f; := Qé“ f. Then we define the oscillation osc(f, %) of f such that

osc®(f, %) 1= v"1 > h2|If = full2 1 (3.3)

TeZ,

and assuming that g € H 1(35 ), we define the oscillation osc(g, elf ) of g such that

oscX(g,ef) =Y h,[|(n x V)(g — 2 g, 3.4

a

eESh

where #*t1g € [H}(dQ) N Pk+1(85 )14 is an approximation of g constructed by first cal-
culating Q'};Hg, and then average the values of Q'};Hg that share the same node to get the
continuous piecewise polynomial #**1g of degree k + 1 or less.

Remark 3.1. We note that g is assumed to be a continuous piecewise linear polynomial
vector in Refs. [2,12], so no data oscillation appears in the a posteriori error estimation.
(From Eq. (3.4), osc(g, 3}‘?) vanishes if g € [H1(dQ)N Pk+1(e}‘?)]d.)

3.1. Reliability

To assess the reliability of the error estimator 7, we need some auxiliary results for the
WG solution (uy, py) € V,, x Wy, assembled in Lemmas 3.1-3.3 below.

Lemma 3.1. For

8y := {v e [H}(]%; vl; €[P(T)]4, VT € 73}, (3.5
we have
V(unh,Vf?)% - (ph:vv';i-}l%1 = (f: f))%z V’b € Sl . (36)
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Proof. From Egs. (2.3)-(2.4), we can rewrite Eq. (2.5) as

k
WV up, Vive)g, — (Pr, Vi v)g, + <(—Vunh +ppr)n, Qpup — vb>agh

+ V<h;1(QI;§uo_ub),Ql;§'Uo - "’b)agh =(f,v)z,, Yop={vy,vp} € Ve, 3.7

where I denotes the appropriate unit dyadic (with representation the d x d unit matrix).
For any ¥ € S;, we take vy = 9, v, = Q’gf). Since ¥ is continuous across each edge/face,
we have Q’g vy = vp, hence Eq. (3.6) holds. O

Let G be an element, an edge or a node of &}, and denote a patch of G by
we:={T €J; TNG=G}. (3.8)

Lemma 3.2. Forany T € &5, and e € T N gy, the following estimates hold:

_1
IVhwo— Voupllor Sh 21Q8ue—upllosr (3.9)
_1
hellV % Vo,ugllor S hg? ||Q]1§uo —uyplloar, (3.10)
_1
hT”fh + vV, '(unh)_vhph”o,T S v 21 Quo —upllo s (3.11)
1 1
W LV, up—pDnd|ls, S v D b lIQkug —upllgen o7 - (3.12)
Tew,

Proof. Firstly, we prove the estimate (3.9). From Eq. (2.3), integration by parts, the
trace inequality and the inverse inequality, with 7 = V,uy— V,uy, € [Pr(T)]4*¢ we have
(Vhuo—Vup, 7r)
=(Vruo, Tr)r — (Voltp, )1
=(Vxuo, Tr)r — (up, Trm)ar + (o, V- 717

k
=(Quuo—Uup, Ten)sy
_1
ShTZ ||Q'l§u0 - ub||o,aT||Tk||o,T

— i.e. estimate (3.9). Similarly, to prove estimate (3.10) we take 7,_; = V x V _ u; to
obtain

(VX V,up,Tra)r
=(nx V,up, Ti1)ar — (Vyup,curl 7,)p
=(nxV, up, Tr_1)ar — (up,curl 7,_n);7 + (uy, V-curl 7,_1)r
= (n X Vi, Tt Dar + (QEug — p, eurl i) g — (Vyug, curl 7,_1);

= (n x (V,u,—Viyug), Tk_1>aT + (Q]Ijuo —up,curl 7,_n)sr + (VX Vyug, Troi)r

3
-1 =3 11nk
ShT ||unh_th0||o,T||7k—1||o,T+hT2||Qbuo_ub”o,aT”Tk—l”o,T,
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which combined with (3.9) implies the estimate (3.10). For the estimate (3.11), with v, =
{vy,0} in (3.7) combined with vy = f, + vV}, - (V,,u) — V,,p, we get

—1;nk
(fh+ vvh.(kuh)_vhphz UO)T =Vh’[' <Qbu0_ub, vo)a’['
3
—32 k
Svh 2 1Qpuo —uplloar - llwollor -

Finally, in order to prove the estimate (3.12), on any edge/face e € ¢, we take vy = 0 with
v, =[(V,up, —pp)n], in Eq. (3.7) such that

<[[(Vunh —ppDn], v, >e =VZ h#(nguo —Up, Vp)en aT

Tew,
Svllvsll Qo —uy|
~ bll0,e T p*o bll0,en 0T »
Tew,
so the estimate (3.12) follows since hy < h, due to the shape regular condition. O

Lemma 3.3. For the error term e, := Vu — V ,uy, the following decomposition holds:
e, =V — v I + v leurl ¢ (3.13)

with 4 € [Hé(ﬂ)]d andr € L%(Q), and ¢ € [Hl(Q)ﬁL%(Q)]2 and ¢ € [Hl(Q)ﬁLg(Q)]g”‘3
when d = 2 and d = 3 respectively, where V-1 = 0 and

VIVllo +Irllo + IV llo S vlleyllo - (3.14)

Proof. We follow Ref. [8] to derive the decomposition (3.13). If ¢ € [Hé Q)4 re L(ZJ(Q)
is the solution of the Stokes equations with the right-hand side —vV-e, € [H™1(£)]¢, then

—vAYp +Vr=—vV-e,, (3.15)

V=0, (3.16)
and we have the standard estimate

VIVl +irllo S vileyllo - (3.17)
On the other hand, we can rewrite Eq. (3.15) as

V- (vWyp —rI—ve,)=0,

hence there exists a ¢ € [H}(Q) N L(Z)(Q)]2 or [HX() N LS(Q)]3><3 such that Eq. (3.13)
holds. The estimate (3.14) then follows from Eq. (3.13) and the estimate (3.17). O

Now we are ready to state the following reliability result for the error estimator 7y,.

Theorem 3.1 (Upper bound). Let (u,p) be the solution of the Stokes problem (1.1), and
(up, py) the solution of the weak Galerkin scheme Egs. (2.5)-(2.6). Then the following relia-
bility estimate holds:

e,% < n,%+osc2(f,<%l)+osc2(g,€,f). (3.18)
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Proof. Recalling e = v||Vu — V,uy |3+ v[[Vu — Vyu,ll3 + v lp —py I3, we prove the
result in three steps.

Step 1. Estimate the error term v||Vu — unh”%-

From Lemma 3.3, e, := Vu — V,,u;, = Vap — v 'rI+ v lcurl ¢ such that
Ve I3 = ey, V) g —(ey, 114 + (ey,curl @) . (3.19)

We have
(e, Dz =(Vu—V,up, )z =0, (3.20)

since obviously (Vu,rI)s = (V-u,r) =0 and from Definitions 2.1, 2.2 and Eq. (2.6)
(Vyup,rDg = (unh,jkrl)gh

:(VW . uh,jkr)gh
:0,

on letting _#* be the L2-projection from L2(£2) onto P,(Z,) and recalling that #*r € W,
forr e L(Z)(Q). To estimate the term v(e,, V)4 in Eq. (3.19), from integration by parts
and noting that ¢ € [Hé(ﬂ)]d with V-1 = 0, the first equation of (1.1), and Eq. (3.6), we
have

Ve, Vg, =— (Al ) — ¥V, up, V1),
=(f = Vp, %) — %V, up, Vo),
=(f, %) — YV, up, V),
=(f, ¥ —Yp)g — (Y, up, V(¥ _,ll’h))% +(f,¥n)g, — v(Vuun, Vpr)z
=(f + Vi (Voun) ¥ =), —(OVu)n, =),
+(pn, V- (Y =),
=(fr+vVh- (Vyup) — Vipy, ¥ _,ll’h)gh +(f —frY —¥n)g,
+ > ([~ up +ppDnl o —y), .

0
€€€h

where ¢, € S; as in (3.5) is an interpolation of 1 satisfying the following estimates [6]:
forany T € &} and e € ¢,

1Y =pllo,r S hrllVllow,
1
1Y = nlloe S he IVYllow, » (3.21)
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with wy, w, as defined by (3.8). Consequently, from Eq. (3.1) and the estimates (3.11),
(3.12), (3.17) and (3.21) we obtain

1/2 1/2
(Z R2\1fh+ vV - (V) — vhphnaT) + ( D> n2|if —fhnaT)

Nl

(e, V) Sv-

TeT, TeZ,
1/2
1
+| DRIV, + ppDall2, v2[|Vapllg
ece)
1/2 1/2
_ _ 1
S (thTlnq’guo—ubnaaT) +(v12h%||f—fh||é,T) V2 [Vl
TeT, TET,
9 5 1/2 1
S +os(f, 7)) villeyllo - (3.22)

Further, to estimate the term (e,, curl @)z in (3.19) we let ¢, be an interpolant of ¢ with
¢, € [HY(Q)N P(F)]> whend =2 or ¢, € [H(Q2)N P;(F,)]1P*2 when d = 3, such that

1
¢ —@ullor ShrliVellow,, [l¢—nlloe ShNVPlow,, VT €Theceyp.  (3.23)

Since obviously curl ¢, € [H(div,)]? := {w e [L2()]4, V-w € [L2(Q)]}, on using
integration by parts and the property of the L?—projection Qllj we have

(e curl @)y = > (Vu—V,up, curl ¢;);

TeZ,
= Z (u—uy,curl ¢yn)sr
TeZ,
= Z (g —Q]gg,curl ¢n), =0. (3.24)

2

eESh

For the discrete solution uy, = {uy,uy}, let u} be an approximation to u, with
d d
ui €[ Pa@)] n[H@],  ullsa=2""g. (3.25)

We can construct u; on assuming that a; r is the i" Lagrange interpolate node in T € F,,
and denoting Sy(a;7) :={T' € J, : a;r € T'}. Thus if Ny(a; ) is the number of the
elements of Sj(a; ), then the value of u} at the node q; r is defined by

Nh(}li,T) Y. uglp(a;p) fora;r ¢99Q,
up(a;r) = rresiaur) (3.26)
P g(a; 1) fora; r €9Q.
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From Ref. [17], we have that

Dl —up2r $ > REEIL W), s=0,1, (3.27)

TeZ, e€ey

and from Egs. (3.23) that

(nx (Vu=Vu;), ¢ = n)yy = D, (R x V)g —2"1g), 6 — 1),

a
h

_1
Sy 2| Véllo - ose(g, €7),

ece

so from the estimates (3.10), (3.14) and (3.27) combined with Eq. (3.24) we obtain

(ey,curl ¢)g = (eu,curl (¢ — ¢h))ﬂh
=(nxe,d—Pnag—(Vxe,d—¢,)s
=(n x (Vu} — Vyu,), ¢ —¢h)m +({nx (Vu—vu), ¢ —¢h)m
+ (1 x (Vhttg = Vyytty), ¢ = b1 )y +(V X Vol @ = )7,

1 1
SvEvell [vz IVuj — Vyuollo + 0sc(g , &7 )

1/2
1
+ vz||vhuo—kuh||o+(2 VRZ||V x kuhnaT) ]

TeZ,

1
S (nn +osc(g, £2)) villeyllo - (3.28)

Consequently, combining Egs. (3.19) and (3.20) with the estimates (3.22) and (3.28) we
obtain

2 2
VIVu =V, uyllg = vlleylls

Sn7+0sc®(f, F) +osc*(g, £7 ). (3.29)
Step 2. We use the triangle inequality and the estimate (3.9) to get

2 2 2
VIV = Vgl S IV — Va2 + V1V, 105, — Vo2

(3.30)
S+ 0sc?(f, Ty) +osc*(g, €7 ) -

: L 2 -1 2
Step 3. Estimate the remaining term of e;, v [[p — py[g-

On the one hand, since p —p;, € L(ZJ(Q) the inf-sup condition indicates that

(p —D )V' 'U)
lp—pullos  sup
vetri@/for 1Vl
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On the other hand, for any v € [Hé(ﬂ)]d let ¥, € S; be an interpolant of v with the same
approximation properties (3.21) as ;. It follows that for the Stokes problem (1.1) with
Egs. (3.6) and (3.29) and the estimates (3.11) and (3.12), on integration by parts we have

(p—pn, V- v)g, =v(Vu,Vv)g —(f,v)g —(pp, V- v)g
=v(Vu—V,up, Vv)g —(f,v)g + W(V,up, Vo)g —(pr, V- v)g
=" (Vu—V,u,, Vo)g —(f,v =)y + v(VWuh, V(v— f)h))gh
—(pn, V- (v = 1))z,
=(Vu—-V,u,, Vv)s — (fh + vV - (Vyup)g — Vipp, v — ﬁh)%

~(f = frov =g, + ((VVyun—ppDn, v — ),

2

1 _1 2

S V2 VU=V upllo + v 2 (Z n2||f ) + vvh-<kuh)—vhph||o,T>
TeZ,

(Z h%n(f—fh)ni,T)

TeZ,

+ 3 AR LT+ D], | - 21V 0l

ees]?
1
< (ny + ose(f, Tp) + osc(g, €9)) v2 ||Vl
such that
v Ip—prlld S nj + 0s(f, F) + osc(g €7,

so with the estimates (3.29) and (3.30) we complete the proof. O

3.2. Efficiency

We use the standard bubble function technique [20] to derive an efficiency estimate
for the error estimator 7. To simplify the discussion, let us assume that g is a continuous
piecewise polynomial of degree k + 1 or less with respect to e}‘?.

Lemma 3.4. Let (u,p) be the solution of the Stokes problem (1.1) and (uy, py,) the solution
of the weak Galerkin scheme (2.5)-(2.6). Then for any T € , and e € €°,
he||fr+ vV (Vttn) = Vil |o 1
SYIVu = Vupllor +llp —pallor +hellf — Frllor (3.31)
b 19+ paD)n ],
SvIIVu =V ugllow, + llp —pallow, +hellf — Fallow, - (3.32)
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Proof. We first prove estimate (3.31). For any T € J, let A1, A5, , 2441 (d = 2,3)
be the barycentric coordinates on T. Take vy = (f}, + vV}, - (V,up) — Vypr)¢ 1 where
¢ =(d+ 1) A A,,- -+, A44 is a bubble function on T, from (1.1) we have

W(Vu,Vor)r —(p,V-vr)r = (f, vr)r .

Consequently,

[fr+ vV (Fyup) — Vhph”iT

S(fn+ V- (Vup) — Vipp, vr)

=v(Vu —V,up, Vor)r —(p—pp, V- vr)r — (f = fr vr)r

< (V”VU - unh”o,T +llp _Ph”o,T +hrllf _fh”O,T)h;ln'vT”O,T 5
which leads to the estimate (3.31). Similarly, to prove the estimate (3.32), for any e € 8}?
let ¢, be the corresponding edge/face bubble function that vanishes on dw,. Then taking
v, = [(-V,u, +prDn]¢, we have

[~V uy +paDnd|fg,
L=V up +ppDnl, w),

= > {(= vVh- (Vo) + Vipp, v, — Vot Vo)1 + (01, V- 0)r |

Tew,

= > {=Fr+ vV (Vo) = Vipy, vdr — (F = fr 00

Tew,

+v(Vu—-V,u,, Vo )r —(p—py, V- ’Ue)T} )

which combined with the properties of the bubble function ¢, and the estimate (3.31)
implies

|[(=vV,uy, +Ph1)n]]||0,e N Z {h%”fh + Vi (Vyup) _Vhph”O’T + h%”f — fallor

Tew,

_1 _1
+ vy | Vu =V, uyllor +hy?llp = pillor }

_1 _1 1
Svh 2 IVu—=Vyugllow, +he?llp —pallow, +hillf — Frllow, »
and hence (3.32). O

Lemma 3.5. Let (u,p) be the solution of the Stokes problem (1.1) and (u;, = {ugy, up}, pr)
the solution of the weak Galerkin scheme (2.5)-(2.6). Then for any e € ¢y,

1 1
-3 -3 k
he 0 (uolloe S 3 (190 = Vyuyllor + Qo —uyllor )

Tew,
such that

2 2 2
m}h S vIIVu - unh”() + 7)1,7;1 .
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Proof. The second estimate follows from the first one directly, so it suffices to prove the
first one. Recalling that ¢, = s U 8 , from the property of the L?—projection Qk and the
estimate (3.9), for any e € €h we have

1 1
he * 1Je(uolllo,e =he *[[[uo]lle

:he_% ||[[u0—u —Qf(uo—u)+Qfuy —ub]]”e

1
-3 k
$ > (193t = Vaull r + 57 Q6o — wyllo or )

Tew,

< 2
(

s 2

Tew,

_1
IVyuy— unh”o,T +||Vu —unh”o,T + hTz ||Q’l§u0 - ub”o,aT)
L
1V = Fupllor +hy? Q§uo —upllgar ) -

d
Similarly, from u;, = Q g on e for any e € ¢ we obtain

1 1 1
-3 -3 -3 k
e 13l = he*llug —glle 5 -, (IVu = Viuyllor + i 1Quo —wlloor ),

Tew,

to complete the proof. O

We now define a bilinear form

"Qf(L)u:p)iI; G: v,q, ’/U\) ;:v_l(]_,’ G)% + (u,V' G)% _('U,V' L)<7h + (Vp> ’U)%
_(Vq’u)ﬂh +<6,(L_p1)n>3‘7h _<ﬁ’(G_qI)n>ag~
+v > (R Qfu—1),Qfv—7),,. (3.33)

TeZ,

Lemma 3.6. Let (u,p) be the solution of the Stokes problem (1.1) and (uy, = {ug,up}, ppn)
the solution of the weak Galerkin scheme (2.5)-(2.6). Then the error equation

& (VWu — vV up, u —ug,p—pp, U —Up; Gy, Vi1, Gk, ) =0 (3.34)

holds for all Gy, € [P(F1)1%*Y, vty € [Pes1(Ti)]% ak € Pi(F3) N LE(Q), B, € [Pr(e)]? for
ec 82 and vi|, =0 fore e 85. In addition,
o (vVWu—vV uy,u—ug,p—pp,u—up; vWu—vV, uy,u—uy,p—py,U—up)

=n%, + vIVu =V, uyl2+ v > hptIQku —ul3, . (3.35)
TeT,
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Proof. Eq. (3.34) follows from the Stokes problem (1.1), the WG scheme (2.5)-(2.6), the
definitions (2.3)-(2.4) and integration by parts. Using the property of the L?—projection
operator QX, we have

2 2
Qb (u —u0) = (=)o 5 = | (@41 — )= Qo —u)r, 5

k 2 k 2
= ”Qbu - u”m ar T ||Qbuo - ub”m oT >

which combined with Eq. (3.34) yields Eq. (3.35). O

Lemma 3.7. Let (u,p) be the solution of the Stokes problem (1.1) and (u;, = {ugy, up}, pr)
the solution of the weak Galerkin scheme (2.5)-(2.6). Then

Non S € +0s(f, Th). (3.36)
Proof. We take
= — k — 4 k+1 _ . _ gk ~_ .~k
G=yVu—»Q"(Vu), v=u-Q"'u, ¢=p—fp, T=u-Qu, (337

where QF, Q’S“ and _g* are the L2-projection operators from [L2(€2)]9%¢ onto [P(Z;,)19%4,
from [L2(£2)]? onto [PkH(ﬂh)]d and from L2(2) onto P,(J,), respectively. Then applying
Lemma 3.6 we obtain

,ef(vVu - vkuh,u —Ug,p —Pp,u _ub;G’ v,q, i)\)

=12, + VIVu =V, |2+ v > hptIQku —ul, . (3.38)
TeZ,

On the other hand, using integration by parts and noting —vAu + Vp = f and V-u =0,
we have

"Qf(vvu - vauh,u —Ug,p —Pp U — U.b;G, v,q, i)\)
=(Vu - VWthG)‘%l + (u —Up, \& G)‘%l - <u _ub:Gn*)a%
- v(v, Au—Vy- (unh))gil +(Vp—Vipp, v)g,
+ <(VVU. - vkuh _(p _ph)I)n)%\)a(gh + ((u - ub) : n>q>5% _(u —Up, thl%1

+v Z h;l(ng(u —up)—u+ ub,Q’gv —6>5T
TeT,

=(Vuy—V,uy,G)g — (ug—up,Gn)ag + (f + vV - (Voyup) — Vipp, v)gh
H{(WVu =V~ (p—pp)Dn,B), . — (Vi o, )z, +{(o—up) - n,q),,

+vZ h;l(ng(u—uo)—u+ub,Q]gv—6>aT. (3.39)
TeT,
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From Egs. (3.37) and the properties of the projection operators QX, Q’S“ . Q’g and gk, for
any T € &, we have

(Vuo _unfu G)T = O 5 (fh + 'VVh * (unh)— Vhph, U)T = O ,
(Qﬁuo—ubﬁ)aT:(), (Vi up,q)r =0,

(VU =2V, u,—(p—p)DN,3),, =((»Wu -9V, uy,—(p —ph)I)n,ﬁ)gg :
(Qfu—Qfug—u+uy, Qv —5),r = IQfu—ull3, — (Qkug—uy, v)sr,

which combined with Egs. (3.38) and (3.39) imply

2 2
02+ Vi — V,u 2

:(f_fh> ’U)% -V Z h;1<Ql}§u0_ub: v)aT _<u0_ub,(G—qI)n>a%
TeT,
+ <(vVu —vwW,u,—(p—py)Dn, @)

2
h

::Rl +R2 +R3 (340)
where we denote
Ri=(f—fnv)g,
_ —1rnk
RZ - v<hT (Qbuo_ub))’v>a(7h 5
R, :(uo—ub,(—G+qI)n>a% + <(vVu —vW,u,—(p —ph)I)n,ﬁ)sﬁ .

From the properties of the projection Qéﬂ, the Cauchy inequality, the trace inequality and
Young’s inequality we therefore have

Ry =(f —fnv)g,
= (f = fi (=) —Q5 (w—up),,

S0sc®(f, Fh) + vIIVu — Viuolls (3.41)
Ry,=—v Z h;l <Q'l§u0—ub,u —uO—QISH(u —u0)>aT
TeZ,
_1
$v > 2 lQku — uyllor Vi — Vauolly
TeT,
l 2 _ 2
< 8nb,h + C1v||Vu thollo > (3.42)

where and henceforth C; (i = 1,2,---) denote different positive constants independent of
the mesh size h and the viscosity coefficient ».

To deal with the term Rs, we denote Gy := vQ*(Vu) — vV,,up, qx := #*p —p;, and
let u; € [Pi1(T)1E N [HY(Q)]? be as in (3.25). Now with g a continuous piecewise
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polynomial of degree k + 1 or less with respect to elf , we have u = u; =g on 35 , which
combined with u;, = Q]I‘)g = Q’gu on sﬁ and (u} —up,(Vu —pI)n)agh\gﬁ = 0 yields

Rs = (up — o, (WWu — Q" (Vu) = (p— #£*p)Dn),
+<V(VU—unh)n—(P—Ph)n,u—ngu)sg
= (uf o, (WWu — W, 1ty — (p— p)Dn), .+ — i WV~ V) n—(p—p)n), .
+(Qbuo—uy, (Gy _ku)n>3gh +(uj —up, W(Vu—V,u)n—(p —Ph)TI)Eg
0]
R; = (u; —ugy, (Vu—V uy)n—(p _ph)n>ayh + (ub —up, (Vu—V,u;)n
_(p_ph)n')a%\gf +<Q]1§u0_ub:(Gk_QkI)n>agh
:<u;k1_u0’ v(vu_kuh)n_(p_ph)n>a‘gh

= > {up —up, [y + D), +(Qhuo —up, (G —qil)n),

0
€€€h

::R31 +R32 +R33 . (343)
From the estimate (3.27) and Lemmas 3.4 and 3.5 we have

Ry, = (u;“l —uy, (Vu—V uy)n—(p _ph)n>ayh
=w(Vu, —Vyuy, Vu — unh)gh —(V-up, —Vy-ug,p —ph)gh
—(uy —ug, fr+ vV (Vyup) — Vipp)g — (up —uo, f — fr)g,

1

2 2 )?
S VIVe=upllo + P —pallo + D B3| Fu+ vVh - (Vo) = Vipi o 1

TeT,
1
1 _ 2
IS O I tACH
TeZ, e€ey
1 _
<M+ Co(VIVu =V yunllg + 7 lIp = prllg + 0se*(£, 7). (3.44)
Rz =— Z <u;kl —uyp, [(—vV,uy +Ph1)n:|]>e
ece)
= > {up —ug, [(=vV,up +pDnl), + > (Qkup —uy, [(—¥V,,uy, + pDnl),
ece) ece)
: :
S (o oz, + 3 1o~ up)iB o ) (S I v9 s+ pr0n D2, )
eesg Te, ece?

h

1 _
< Mo+ Ca (IVU = Vyunllg + 7 lIp = pylg + 0sc*(£, 7)) - (3.45)
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For the term R;;, we readily have
R33 = (nguo —uy, (G —qiDn) 54

_1
S Z hTZ ||Q]1§uo - ub”o,aT (v||Qk(Vu - unh)llo,T + ||fk(P _ph)HO,T)

TeZ,
1 _
< g+ Ca(MIVu =Vl + 7 Ip—pil3, ). (3.46)
and the desired estimate (3.36) follows from (3.40)-(3.46). O

Using the Lemmas 3.5 and 3.7, we finally obtain the following efficiency result.

Theorem 3.2 (Lower bound). Let (u,p) be the solution of the Stokes problem (1.1) and
(uy, py) the solution of the weak Galerkin scheme (2.5)-(2.6). Then

"r),% S e}zl + oscz(f,ﬂh) . (3.47)

4. Numerical Results

We considered several numerical examples in two dimensions, in order to illustrate the
reliability and efficiency of our residual-based a posteriori error estimator 1) established
in Theorems 3.1-3.2 for the WG sheme (2.5)-(2.6) with k = 0,1. In Examples 4.1-4.3, we
set Q = [0,1] x [0,1] and adopted uniform mesh refinement of Q (cf. Fig. 1), while for
Example 4.4 we considered an L-shaped domain and used adaptive grids (cf. Fig. 2).

Example 4.1. This test is from Ref. [5], and we adopted the viscosity coefficient v =1 and
the source term f such that the analytical solution to the Stokes problem (1.1) is

u(x,y) =—x*(x =1y (y — D2y —1), uy(x,y)=x(x—1)2x—1)y*(y —1)?,
p(X,}’) = XG_yG'

Example 4.2. This test is from Ref. [16], and we sety = 1 and f = 0. The analytical
solution to the Stokes problem (1.1) is

ui(x,y)=—e*(ycosy +siny), uy(x,y)=e ysiny,
p(x,y) =2e*siny —2(e—1)(1—cos1).

Example 4.3. For three different choices of v (viz. v =1,1e—6 and le —9), we adopted
f such that the analytical solution to (1.1) is

uy(x,y)=sin2nxcos2nwy, uy(x,y)=—cos2mxsin2wy,

1
p(X,)’):Xz)’z_g-
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Figure 1: 4 x 4 grid of Q in Examples 4.1-4.3.

(a) initial grid (b) adaptive grid (I = 16)
Figure 2: Initial and adaptive grids of € in Example 4.4.

Example 4.4. This test is from Ref. [14]. We set Q = (—1,1)?\[0,1) x (—1,0] (cf. Fig. 2),
f =0, and v=1. The analytical solution to the Stokes problem (1.1) in polar coordinates

(@) is

uy (r, ) = r*[(1+ ) sin(p)¥ () + cos(0)¥’ ()],
up(r, @) = r*[ sin(p)¥’(p) — (1 + A) cos()¥(p) ],

p(r, ) =—r* 1+ )2 () + " (9)]/(1-1),
where

U(p) =sin ((1 + A)cp) cos(Aw)/(1+ A)—cos ((1 + A)cp)
—sin ((1 —A)cp) cos(Aw)/(1 —A)+cos ((1 —A)cp) ,

with the chosen parameters A = 0.54448373678246, «w = 371 /2.

In Tables 1-5 we show our numerical results for Examples 4.1-4.3 for the exact error ey,
the estimator 7, the data oscillation terms osc(f, ;) and osc(g,sg ), the corresponding
convergence rates, and the ratio y := n;/e;,. In particular, Tables 3-5 show results for
Example 4.3 for the three different viscosity coefficients (v = 1,1e —6 and 1le —9). In
Example 4.1 we note that g = 0 means osc(g, 35 ) =0, and in Example 4.2 f = 0 implies
osc(f,7,) = 0. Compared with the estimator 7, the data oscillation terms osc(f, Z,)
and osc(g, 85 ) are of higher order. We can also see that the ratio y remains independent
of the mesh size h and the viscosity coefficient v as the mesh was refined, showing that



526 X. Zheng and X. Xie

Table 1: Numerical results for Example 4.1.

k Mesh en rate 1), rate  osc(f,7,) rate vy
0 4 x4 2.84E-01 - 3.90E-01 - 2.03E-02 - 1.37
8x8 1.59E-01 0.83 1.94E-01 1.01 2.62E-03 296 1.22

16 x 16 8.30E-02 0.94 9.67E-02 1.01 3.29E-04 2.99 1.17
32 x 32 4.20E-02 098 4.82E-02 1.00 4.13E-05 3.00 1.15
64 x 64 2.11E-02 1.00 2.40E-02 1.00 5.16E-06 3.00 1.14

1 4x4 4.28E-02 - 9.51E-02 - 1.59E-03 - 2.22
8x8 1.16E-02 1.89 2.53E-02 191 1.01E-04 3.98 2.19
16 x 16 2.97E-03 196 6.51E-03 1.96 6.33E-06 3.99 2.19
32 x 32 7.51E-04 1.99 1.65E-03 1.98 3.96E-07 4.00 2.19
64 x 64 1.89E-04 1.99 4.14E-04 1.99 2.48E-08 4.00 2.20

Table 2: Numerical results for Example 4.2.

k Mesh en rate 1, rate  osc(g, s}‘? ) rate 7y
0 4x4 7.54E-01 - 4.80E-01 - 2.78E-01 - 0.64
8x8 3.88E-01 0.96 2.66E-01 0.85 9.86E-02 1.50 0.69

16 x 16 1.96E-01 0.99 1.39E-01 0.94 3.49E-02 150 0.71
32 x 32 9.81E-02 1.00 7.05E-02 0.98 1.23E-02 1.50 0.72
64 x 64 4.90E-02 1.00 3.55E-02 0.99 4.36E-03 1.50 0.72

1 4x4 3.72E-02 - 1.32E-02 - 1.30E-02 0.36
8x8 9.51E-03 1.97 3.46E-03 1.94 2.31E-03 2.50 0.36
16 x 16 2.41E-03 198 8.83E-04 1.97 4.08E-04 2.50 0.37
32 x 32 6.05E-04 199 2.23E-04 1.99 7.21E-05 2.50 0.37
64 x 64 1.52E-04 2.00 5.59E-05 1.99 1.28E-05 2.50 0.37

Table 3: Numerical results for Example 4.3 with v=1.

k Mesh ¢, rate m rate osc(f,Z,) rate osc(g,sg) rate  y

0 4x4 5.11E+00 - 8.09E+00 - 1.46E400 - 1.93E+00 - 1.58
8x8 2.69E+00 0.93 3.95E+00 1.03 1.93E-01 2.92 7.05E-01 1.46 1.47
16 x16 1.36E4+00 0.98 1.95E4+00 1.01 2.44E-02 2.98 2.51E-01 1.49 1.43
32x32 6.84E-01 1.00 9.72E-01 1.01 3.07E-03 3.00 8.90E-02 1.50 1.42
64 x 64 3.42E-01 1.00 4.85E-01 1.00 3.84E-04 3.00 3.15E-02 1.50 1.42

1 4x4 1.53E+00 - 3.26E+00 - 3.30E-04 - 3.94E-01 - 2.13
8x8 4.08E-01 1.91 8.91E-01 1.87 2.19E-05 3.92 7.16E-02 2.46 2.18
16 x16 1.04E-01 1.98 2.29E-01 1.96 1.39E-06 3.98 1.27E-02 2.49 2.20
32x32 2.60E-02 1.99 5.76E-02 1.99 8.71E-08 3.99 2.26E-03 2.50 2.21
64 x 64 6.52E-03 2.00 1.44E-02 2.00 5.45E-09 4.00 3.99E-04 2.50 2.21

the proposed a posteriori estimator was reliable and efficient, and also robust with respect
to v. The analytical solution in Example 4.4 has a singularity at the origin. We used an
adaptive WG (k = 0) algorithm (Algorithm 4.1) to compute the approximation solution.
In this algorithm, we took the marking parameter 6 = 0.5 and stopping criterion tol =
1078, denoted by n(u;, f,g,7;) the estimator n;, on the triangulation , = 7, and refined
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Table 4: Numerical results for Example 4.3 with »=107°.

k Mesh

en rate My rate osc(f,Z,) rate osc(g,sf) rate  y

0 4x4 5.88E+01 - 1.04E+02 - 1.40E+00 - 1.93E-03 - 1.78
8x8 3.10E+01 0.92 5.07E4+01 1.04 1.76E-01 2.99 7.05E-04 1.46 1.63
16 x16 1.56E4+01 0.99 2.50E4+01 1.02 2.20E-02 3.00 2.51E-04 1.49 1.60
32x32 7.79E+00 1.00 1.24E+01 1.01 2.75E-03 3.00 8.90E-05 1.50 1.59
64 x 64 3.89E+00 1.00 6.18E+00 1.01 3.44E-04 3.00 3.15E-05 1.50 1.59

1 4x4 5.53E+00 - 1.34E+01 - 7.74E-02 - 3.94E-04 - 2.42
8x8 1.43E4+00 1.95 3.38E+00 1.99 4.84E-03 4.00 7.16E-05 2.46 2.37
16 x16 3.63E-01 1.98 8.49E-01 1.99 3.03E-04 4.00 1.27E-05 2.49 2.34
32x32 9.16E-02 1.99 2.13E-01 2.00 1.89E-05 4.00 2.26E-06 2.50 2.32
64 x64 2.30E-02 1.99 5.32E-02 2.00 1.18E-06 4.00 3.99E-07 2.50 2.31

Table 5: Numerical results for Example 4.3 with v=107°.

k Mesh ¢, rate m rate osc(f,Z,) rate osc(g,sf ) rate y

0 4x4 1.86E+03 - 3.30E+03 - 4.42E+01 - 6.11E-05 - 1.78
8x8 9.81E+02 0.92 1.60E+03 1.04 5.56E4+00 2.99 2.23E-05 1.46 1.63
16 x16 4.94E4+02 0.99 7.91E+02 1.02 6.96E-01 3.00 7.94E-06 1.49 1.60
32x32 2.46E+02 1.00 3.92E+02 1.01 8.71E-02 3.00 2.81E-06 1.50 1.59
64x64 1.23E4+02 1.00 1.95E4+02 1.01 1.09E-03 3.00 9.95E-07 1.50 1.59

1 4x4 1.75E+02 - 4.24E+02 - 2.45E+00 - 1.25E-05 - 2.42
8x8 4.52E4+01 1.95 1.07E4+02 1.99 1.53E-01 4.00 2.26E-06 2.46 2.37
16x16 1.15E4+01 1.98 2.68E+01 1.99 9.57E-03 4.00 4.03E-07 2.49 2.34
32x32 2.90E+00 1.99 6.72E+00 2.00 5.98E-04 4.00 7.13E-08 2.50 2.32
64x64 7.27E-01 1.99 1.68E4+00 2.00 3.74E-05 4.00 1.26E-08 2.50 2.31
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marked elements by the newest vertex bisection [15]. Fig. 2 shows the initial grid and an
adaptive grid with | = 16, and Fig. 3 displays the decay history of the exact error e; and
the estimator n; = n(u;, f,g, 7).

In Fig. 2(b) we see that the refinement concentrates around the origin, so the error
estimator was able to capture the solution singularity. Fig. 3 shows that the adaptive algo-
rithm achieved almost the optimal order convergence for both the error and estimator —
ie. ¢ < N~1/2 and TS N_l/z, where N denotes the number of degrees of freedom. We
also note that h = O(N~'/2) for the quasi-uniform grids in two dimensions.

5. Conclusion

We have proposed a simple residual-type a posteriori error estimator for a weak Galerkin
finite element discretization of the Stokes equations in two and three dimensional spaces.
Both theoretical analysis and numerical experiments show that the estimator is reliable,
efficient and robust with respect to the viscosity coefficient ».



528 X. Zheng and X. Xie

Algorithm 4.1 Adaptive algorithm

Input:
Jo: initial triangulation; f: source term; g: boundary condition;
tol: stopping criteria; 6 € (0,1): marking parameter.
Output:
;. a triangulation; (uy, py): WG finite element approximation on T;
n=11=0;
while 7 > tol
SOLVE the system (2.5)-(2.6) with k = 0 on J; to get the approximation solution
(ul’pl);
ESTIMATE the error by n =n(uy, f,g,%);
MARK a set .#; C J; with minimum number such that
nz(ul)fag: '//tl) = an(ubf’g:%)
REFINE element in .#; and necessary elements to a conforming triangulation 7, 1;
[=1+1;
end
(uy,ps) =(u,p), I3 =T

T T
—#— Estimated error

35F o} Slope-1/2
. —©&— Exact error

error
N
o

. . .
6.5 7 75

. .
5 55

If)g(N)
Figure 3: Decay history of the error and estimator.
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