
East Asian Journal on Applied Mathematics Vol. 1, No. 4, pp. 297-371

doi: 10.4208/eajam.040411.030611a November 2011

REVIEW ARTICLE

Interface Dynamics and Far-From-Equilibrium Phase

Transitions in Multilayer Epitaxial Growth and Ero-

sion on Crystal Surfaces: Continuum Theory Insights
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Abstract. We review recent theoretical progress in the physical understanding of

far-from-equilibrium phenomena seen experimentally in epitaxial growth and ero-
sion on crystal surfaces. The formation and dynamics of various interface structures

(pyramids, ripples, etc.), and also kinetic phase transitions observed between these

structures, can all be understood within a simple continuum model based on the
mass conservation law and respecting the symmetries of the growing crystal sur-

face. In particular, theoretical predictions and experimental results are compared

for (001), (110) and (111) crystal surfaces.
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298 L. Golubović, A. Levandovsky and D. Moldovan

1. Introduction

There is extensive research interest in the dynamics of the surfaces of thin films un-

dergoing molecular beam epitaxy (MBE) growth. The MBE technique is considered the

best method for the growth of thin solid films, of great importance in applied and exper-

imental studies [1]. It is a unique way to grow high quality crystalline materials; and in

particular, to form structures with very high precision in the vertical direction perpen-

dicular to the substrate, such as monolayer-thin interfaces or atomically flat surfaces.

However, multilayer epitaxial growth may exhibit complex surface features that can-

not easily be controlled experimentally. In epitaxial multilayer growth regimes, surface

morphology dynamics involves a subtle interplay between the depositing molecular

flux and the relaxation of the surface profile through the surface diffusion of adatoms.

Of paramount significance are adatom interactions with steps that form on the mul-

tilayered surface, particularly the energy barriers occurring near the step edges that

inhibit adatom transitions between layers of the growing interface. These so-called

step edge barriers were found by Ehrlich and Hudda [2], and further elucidated by

Schwoebel [3] and Villain [4]. Ehrlich-Schwoebel-Villain (ESV) energy barriers pro-

duce up-hill adatom surface currents, from the terrace of the lower layer towards the

terrace of the upper layer. The ESV effect produces instabilities in the evolution of the

surface morphology, which ultimately lead to the formation of fascinating structures

such as mounds and pyramids across the growing interface [5, 6]. The ESV instability

is a non-equilibrium effect, which is present only if the adatom density on a terrace

is higher than in equilibrium. The deposition process by molecular beams raises the

adatom density well above its equilibrium value, and surface currents are generated

that depend on the local slope of the growing film. From a study of the diffusive dy-

namics of adatoms on vicinal surfaces with step edge barriers, Villain [4] found that

the surface non-equilibrium current JNE has the same direction as the slope, and con-

sequently tends to increase the local slope of the interface. However, once the interface

attains sufficiently large slopes, other processes that counterbalance the destabilizing

ESV effect also become significant, so the net current in non-equilibrium states vanishes

for certain slopes (slope selection). Indeed, funneling and knockout processes [7, 8]

can lead to zeros of JNE(M), even for small values of the interface slope M [9, 10].

Due to slope selection, the interface restructures into facets with pyramid-like objects.

The slopes of these facets correspond to stable zeros of the non-equilibrium surface

current.

Many experiments have shown that the surface evolution of films grown by MBE

frequently involves the formation of pyramids or pyramid-like structures, even for ho-

moepitaxial growth. Pyramid-like structures have often been observed — e.g. on the

homoepitaxy of GaAs [6,11], Cu [5,44], Ge [12] and Fe [13,14], all grown on singular

(001) substrates, and on the Rh(111) surface [15]. The lateral size λ and height w of

these pyramids grow in time as power laws with the same exponent. Thus the ratio w/λ
corresponding to the pyramid slope eventually approaches a constant value, so there is
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a slope selection in typical epitaxial growth. Importantly, the corresponding coarsening

exponent of the power law for the growth of λ and w was found experimentally to

depend on the symmetry of the surface. For example, the experimental value of the

coarsening exponent for growth on (001) surfaces is close to 1/4 in agreement with

simulations [16, 17], whereas the exponent reported for the growth on (111) surfaces

is close to 1/3 [15]. However, although there has been extensive experimental work,

until recently there has not been sufficient understanding of how the large scale surface

morphology coarsens in MBE and why the exponents have these values.

Seminal studies by two of us [18], and independently by Siegert [19], gave an

initial qualitative understanding of the nature of the coarsening processes seen in mul-

tilayer epitaxial growth. In particular, a combination of numerical simulations and

analysis provided the first analytic explanation of the coarsening law exponents seen

in MBE growth [18]. The approach was inspired in part by theories of phase ordering

processes such as the growth of domains in magnetic systems [20], assuming an un-

derlying effective free energy that governs the film surface dynamics as in earlier work

on epitaxial growth [21, 22]. Indeed, the dynamics of surface-like elastic manifolds

such as membranes are governed by an elastic free energy, exemplified in studies of the

buckling dynamics of semi-flexible polymers and membranes [23, 24]. However, since

epitaxial growth has a number of specific features, no standard phase ordering theory

seemed applicable, so our subsequent studies of epitaxial growth [25–29] reviewed in

this article deliberately avoided the effective free energy assumption. A particularly

significant effect, not tractable using an effective free energy approach, is the ubiqui-

tous vertical growth asymmetry present in any realistic interface dynamics. The vertical

asymmetry reflects the fact that the medium and conditions above the interface (in the

vacuum hosting the molecular beam) are not the same as the medium and conditions

below the interface (in the solid bulk). This yields experimentally well known differ-

ences between the shapes of pyramid tops and valleys (pyramidal pits). However, the

actual role of the vertical asymmetry on the interface morphologies remained elusive

until our more recent studies on (110) surfaces [27] and (001) surfaces [29] reviewed

here (cf. § 4.2 and § 5).

Our approach involves numerical simulations and the analysis of continuum inter-

face dynamics models constructed for various types of crystal surface symmetry. Our

simple continuum models are based on mass conservation of the deposited thin film,

and respect the strong restrictions imposed by symmetries of the growing crystal sur-

face (cf. § 2). From these fundamentals alone, coarsening exponents are analytically

obtained, and qualitative differences between the coarsening behaviors experimentally

observed on hexagonal symmetry (111) and on square symmetry (001) surfaces are

explained (cf. § 3). As initially found [18], there are striking qualitative differences in

the surface morphologies (spatial organization of pyramids) on different symmetry sur-

faces, with pyramids arranged as nearly regular arrays (2D-crystal-like arrangements)

on (001) surfaces but randomly (2D-glass-like arrangements) on (111) surfaces — cf.
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§ 3. One of the major findings of Ref. [18] was that the edges between pyramids facets,

which form a network across the growing interface, are essential for a conceptual and

qualitative understanding of the coarsening dynamics of molecular beam epitaxy (cf.

§ 2, § 3 and § 4.3).

In this review, we also discuss the rich interfacial phenomena observed in multi-

layer homoepitaxial growth and erosion on (110) crystal surfaces [30–35]. Experi-

mentally, these rectangular symmetry surfaces exhibit a multitude of interesting non-

equilibrium interfacial structures, such as rippled one-dimensionally periodic states not

present in the homoepitaxial growth and erosion on high symmetry (001) and (111)

crystal surfaces. The continuum theory approach, developed in Refs. [25–28] and re-

viewed here, provides a unified phenomenological model that predicts and elucidates

a multitude of novel interfacial states on (110) surfaces and the far-from-equilibrium

transitions between them (cf. § 4), including the observed transitions between two

major types of rippled states on (110) surfaces in the so-called 90◦ ripple rotation

transition [30, 31, 33–35]. The model has revealed several novel intermediate inter-

face states, intervening via consecutive transitions between the two rippled states (cf.

§ 4.1). One is the Rhomboidal Pyramid State [25] that was subsequently observed

by de Mongeot and coworkers, in the epitaxial erosion of Cu(110) and Rh(110) sur-

faces [33, 35]. In addition, the model captures a number of interesting intermediate

states with structural properties somewhere between those of rippled and pyramidal

states, including the prominent Rectangular Rippled states of long roof-like objects

(huts) seen on Ag(110) surfaces [31, 34]. The model also predicts the existence of a

striking interfacial structure that carries nonzero (persistent) surface currents. A pe-

riodic vortex pattern of the surface current field, which forms in this Buckled Rippled

interface state, is an unusual far-from-equilibrium relative of self-organized convective

flow patterns in hydrodynamic systems. The existence of such an unusual surface state

shows that the widely accepted assumption of zero surface currents on the selected

interface structures is not always true.

We conclude by reexamining the phenomenology of multilayer epitaxial growth

and erosion on square symmetry (001) crystal surfaces, within our unified model [29].

The 45◦ pyramid rotation transitions between two major types of four-sided pyramids

on (001) surfaces [36] and other related phenomena [37–40] are elucidated. Novel

intermediate states involving many-sided pyramids, intervening in these transitions

and causing experimentally observed enhanced interface roughening, are predicted

and characterized. The effects of the vertical (pyramid-pit) growth asymmetry on the

multitude of states on (001) crystal surfaces are also described and clarified.

2. Continuum Modeling

In our continuum modeling of the the dynamics of multilayer epitaxial growth and

erosion [4,41], the evolution of the interface is described by an equation that is gener-
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(a) (b) Vertical Asymmetry

Figure 1: (a) Geometry of the surface growth process in epitaxial growth and erosion. (b) Vertical growth
asymmetry (VA) induces the difference between the shapes of pyramid tops and bottoms (pits).

ally of the form
∂h(x, t)

∂t
= v(h) ,

where the local interface height velocity v(h) is a function of the interface height h(x, t)
over a base plane and x = (x1, x2) is a two-dimensional base plane vector — cf.

Fig. 1(a). In the absence of vertical asymmetry (VA), the interface velocity v(h) is

an odd function of the interface height [v(−h) = −v(h)], so under vertical reflection

(h → −h) there is dynamical symmetry of the interface evolution equation. However,

with such a model there would be no shape difference between pyramids and pyra-

midal pits (upside-down pyramids) for example. In reality, this difference is always

present [cf. Fig. 1(b)], as is VA. Indeed, for realistic interface dynamics models we

have v(−h) 6= −v(h), and the interface velocity can be decomposed as

v(h) = vVS(h) + vVA(h) .

Here vVS(h) = −vVS(−h) = [v(h)−v(−h)]/2 and vVA(h) = vVA(−h) = [v(h)+v(−h)]/2
are the respective odd and even parts of v(h), and the even part vVA(h) breaks the ver-

tical reflection (h → −h) symmetry of the interface dynamics to introduce the VA

effects. This separation allows us to extract generic VA effects (directly compare results

for nonzero VA to those obtained for zero VA), which is virtually impossible in both

experiments and microscopic kinetic simulations.

Under typical conditions for epitaxial growth, the height h(x, t) defining the posi-

tion of the interface (relative to a base plane) obeys a conservation law. All relaxation

processes on the surface conserve the deposited volume of growing film in the absence

of desorbtion, vacancies or overhangs. Thus in a frame co-moving with the advancing

crystal interface, the height evolution equation is of form

∂h(x, t)

∂t
= −∇·J+ η(x, t) = −∂J1

∂x1
− ∂J2
∂x2

+ η(x, t) , (2.1)
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where J = (J1, J2) is the surface current vector and η(x, t) is the white noise describing

the fluctuations of the deposition flux. The average deposition flux has been eliminated

from Eq. (2.1) by adopting the co-moving frame of reference, and noise is irrelevant in

related coarsening processes such as spinodal decomposition or Ostwald ripening [20].

In the same spirit, the focus of this review is on the dynamics described by Eq. (2.1) for

η(x, t) = 0. The surface current vector in Eq. (2.1) can generally be decomposed as

J = J
NE(∇h) + J

(curv) , (2.2)

where J
NE(∇h) is the non-equilibrium surface current, a function of the local interface

slope vector M = ∇h = (M1,M2) with M1 = ∂h/∂x1 andM2 = ∂h/∂x2 [4,25–29,41].

It is the most important contribution to the net surface current, and must not only incor-

porate the effects of the ESV instability but also lead to the slope selection mentioned in

the Introduction. Thus for small slopes the non-equilibrium surface current JNE(∇h) is

nonzero and up-hill [4], rendering the initially flat interfaces unstable, but it may van-

ish at some values of the slope vector M. As discussed in this review, in most but not

all situations of interest the special values of M where J
NE(M) = 0 correspond to the

facet slopes of the surface structures (pyramids, ripples, etc.) that develop across the

interface. On the other hand, the “curvature current” contribution J
(curv) in Eq. (2.2)

vanishes on flat interfaces (”facets”) no matter what slope M = ∇h they may have;

and it has the form

J
(curv) = JSD + JVA , (2.3)

where JSD ∼ ∇(∇2h) is a contribution isomorphic to the well known Mullins’ surface

diffusion current and JVA is the vertical asymmetry current. The form

JVA ∼ ∇|∇h|2

after Villain [4] is even under vertical reflection h → −h, and therefore produces an

even contribution to the interface velocity that introduces VA into the interface dynam-

ics represented — cf. Eq. (2.1). The vertical asymmetry current JVA is reconsidered

below.

In contrast to JVA, both the non-equilibrium and Mullins’ surface diffusion currents

are odd under vertical reflection h → −h, so do not contribute any VA. In particular,

the non-equilibrium current J
NE(∇h), which encodes the significant ESV instability

and other effects that stabilize the preferred slopes [18, 19, 25–29, 41], does not break

the vertical symmetry. Thus with a perpendicular depositing beam incidence, one must

have J
NE(−M) = −J

NE(M) due to the symmetry of major crystal surfaces such as

(001), (111) and (110) under the horizontal (base plane) inversion x → −x. It follows

that the horizontal inversion symmetry coincidentally implies that JNE must also change

sign under the vertical reflection h → −h (with x unchanged), as M = ∇h = ∂h/∂x.

Thus the non-equilibrium current JNE(∇h) does not introduce any VA, so fundamen-

tal growth features such as the values of preferred facet slope vectors (encoded in the

form of JNE(∇h) through its stable zeros) are insensitive to VA! One therefore arrives
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at the striking conclusion that major growth factors, such as the Ehrlich-Schwoebel-

Villain instability and slope stabilizing effects modeled by J
NE(∇h), do not themselves

introduce VA in any fundamental way. Nonetheless, VA is ubiquitous, with no putative

up-down reflection h→ −h symmetry involved in any realistic interface dynamics. Due

to VA, the shapes of pyramids and pits are not simply related to each other by up-down

reflection, but the potential effects of VA remain uncertain and poorly understood. For

example, can VA alone produce major qualitative effects on long length scale interface

morphologies? As noted above, possible values of preferred facet slope vectors corre-

sponding to the set of stable zeros of JNE(∇h) are insensitive to VA. However, which of

these many zeros are selected during interface growth is generally not encoded in the

form of JNE(∇h), such as the case in Eq. (2.6) below. Unless there are some special

restrictions, not generic to the epitaxial growth process but arbitrarily imposed on the

form of the surface current (e.g., the existence of an effective free energy generating

the model dynamics), the selection of preferred facets from the set of all allowed facets

(corresponding to all stable zeros of JNE(∇h)) is kinetically decided during the surface

evolution. Consequently, kinetic VA effects may play a qualitatively important role in

determining the form of the large scale structures of the growing interfaces in epitaxial

growth and erosion. Our results reviewed in § 4.2 and § 5 well document this important

role of VA.

The form JVA ∼ ∇|∇h|2 mentioned above, which contributes the so-called conser-

vative Kardar-Parisi-Zhang (CKPZ) term −∇·JVA ∼ −∇2|∇h|2 to the interface velocity

in Eq. (2.1), is applicable to isotropic surfaces. However, the contribution depends upon

the symmetries of the crystal surface under study, such that JVA and the corresponding

conservative CKPZ term may be more complex. Thus on respecting surface symmetries,

for (110) surfaces we find the VA contribution in Eq. (2.1) is a generalised CKPZ term

−∇·JVA =− λ11
2

(

∂

∂x1

)2( ∂h

∂x1

)2

− λ12
2

(

∂

∂x1

)2( ∂h

∂x2

)2

− λ21
2

(

∂

∂x2

)2 ( ∂h

∂x1

)2

− λ22
2

(

∂

∂x2

)2( ∂h

∂x2

)2

− λ3
2

∂

∂x1

∂

∂x2

[

∂h

∂x1

∂h

∂x2

]

, (2.4)

This form is again even in h, in contrast to the surface diffusion-like (Mullins) current

JSD for (110) surfaces, which renders in Eq. (2.1) the term

−∇·JSD = −κ11
(

∂

∂x1

)4

h− 2κ12

(

∂

∂x1

)2 ( ∂

∂x2

)2

h− κ22

(

∂

∂x2

)4

h (2.5)

that is odd in h. In Eq. (2.5), for the (110) crystal surface the constants καβ are

generally unequal. The VA contribution to the interface velocity exhibited in Eq. (2.4)

is consistent with the symmetries of the (110) surface that require Eq. (2.4) to be

invariant under two reflections (i) (x1, x2) → (−x1, x2), and (ii) (x1, x2) → (x1,−x2),
where here and in the following discussion the coordinate axes are directed along the

two principal crystallographic directions of (110). For the (110) surfaces, the two
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principal directions are not coincident, so in Eq. (2.4) the constants λαβ are unequal

such that there are five independent λ-constants. However, for higher symmetry (001)

surfaces there is also diagonal reflection symmetry (x1, x2) → (x2, x1) [18, 29], which

implies λ11 = λ22 and λ12 = λ21, so for (100) surfaces there are three independent

λ-constants in Eq. (2.4). For isotropic surfaces, the term in Eq. (2.4) must be invariant

under all 2D rotations, which implies that λ11 = λ12 = λ21 = λ22 = λVA and λ3 = 0. In

this case Eq. (2.4) reduces to the simple (single constant) conservative KPZ form

−∇·JVA = −λVA
2

∇2|∇h|2 , (2.4′)

which is thus strictly applicable only to idealized isotropic surfaces.

Let us now proceed to consider the non-equilibrium current JNE(M), which plays

the dominant role in our continuum modeling of epitaxial growth and erosion. The

form of JNE(M) in Eq. (2.2) is also strongly restricted by the orientational symmetries

of the crystal surfaces. For any surface symmetry operation S that transforms the slope

vector M into the vector SM, the vector JNE must transform into the vector SJNE. In

other words, for any surface symmetry operation S the functional equation

J
NE(SM) = SJNE(M)

must be satisfied. For example, for (110) surfaces that have the symmetry of a rect-

angle, all symmetry operations can be generated by the two reflections S1: (x1, x2) →
(−x1, x2) and S2: (x1, x2) → (x1,−x2) on taking the coordinate axes to be the two

principal axes of the (110) crystal surface. Consequently, the above functional equa-

tion implies expansions of the form [25,26],

JNE
1 (M1,M2) =M1[r1 − u11M

2
1 − u12M

2
2 + · · · ],

JNE
2 (M1,M2) =M2[r2 − u22M

2
2 − u21M

2
1 + · · · ] (2.6)

for the (110) surfaces, where the dots indicate higher order terms. Truncating out

these higher order terms leads to our simplest comprehensive model [25, 26], consis-

tent with the symmetries of the (110) surface respected by the terms exhibited explicitly

in Eq. (2.6).

On the other hand, for (001) surfaces with square symmetry, one also has diagonal

reflection symmetry (x1, x2) → (x2, x1). This higher symmetry yields the condition

JNE
1 (M1,M2) = JNE

2 (M2,M1), implying the restrictions r1 = r2, u12 = u21 and u11 =
u22 on the parameters in Eq. (2.6), so for (001) surfaces Eq. (2.6) reduces to the form

JNE
1 (M1,M2) =M1[r − uM2

1 − buM2
2 + · · · ] ,

JNE
2 (M1,M2) =M2[r − uM2

2 − buM2
1 + · · · ] (2.7)
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where b is an anisotropy parameter [18, 19]. For the special value b = +1, with

the terms explicitly displayed in Eq. (2.7) the current acquires the full rotational in-

variance J
NE(SM) = SJNE(M), where S is any 2D rotation. Thus for b = +1 the

model in Eq. (2.7) becomes rotationally invariant (isotropic), and can therefore be

used to study isotropic surfaces. For b < 1, the current (2.7) has four stable zeros at

[M1,M2] = [M0 cos(θn),M0 sin(θn)], with M0[2r/u(1+b)]
1/2 and θn = 45◦+(n−1) ·90◦

for n = 1, 2, 3, and 4. For b = +1, the current vanishes on a continuous set of points

constituting a circle in the M -space, with radius M0 = [r/u]1/2. For b > +1, the current

(2.7) is again anisotropic, but with new locations of stable zeros of the current now at

[M1,M2] = [M0 cos(θn),M0 sin(θn)], where M0 = [r/u]1/2 and θn = (n − 1) · 90◦ for

n = 1, 2, 3, and 4. Thus the preferred facets for b > +1 are rotated by 45◦, with respect

to those preferred for b < 1. By tuning the anisotropy parameter b, one can go from

the square anisotropy regime when b < +1 to the other square anisotropy regime when

b > +1, on crossing through the isotropic point at b = +1. The four-sided pyramids

and the facet edge networks that form for b > +1 are rotated by 45◦ with respect to

those that form for b < +1 — cf. Fig. 2, depicting the so-called Phase I interface state

from simulations [18]. For b < +1, the pyramid edges are parallel to the x1 = 0 and

x2 = 0 axes, as seen in the Phase I simulations in Fig. 2; whereas for b > +1, the

pyramid edges are parallel to the x1 − x2 = 0 and x1 + x2 = 0 axes, corresponding to

the so-called Phase II where the four-sided pyramids are rotated by 45◦ with respect to

the Phase I pyramids — cf. § 5. Such a 45◦ pyramid rotational transition between the

two major types of four-sided pyramids on (001) surfaces has indeed been observed

experimentally on (100) surfaces [36,37]. Realistic modeling of this transition has re-

quired the incorporation of the higher order terms indicated by the dots in Eq. (2.7),

leading to the more detailed model introduced in Ref. [29] and discussed in § 5 of this

review. (The higher order terms are necessary to remove the artificial isotropic critical

point b = 1 implied by Eq. (2.7) when the higher order terms are truncated out.)

Let us return to the discussion of the general features of epitaxial growth in the

framework of our continuum modeling. A major aspect is the selection of the slope

vectors of the faceted morphologies developing across the growing surface. Thus an

outstanding question is, what are the slopes of the preferred (selected) facets? It is

frequently stated in the literature (without proof) that these slopes correspond to the

zeros of the non-equilibrium current JNE(M). To examine this point, let us reconsider

the model current (2.6) for the (110) surfaces. For the special parameter choice u12 =
u21, not required by any first principles such as (110) surface symmetry, the J

NE(M) in

Eq. (2.4) becomes a gradient of a potential

J
NE(M) = −∂U(M)

∂M
, (2.8a)

where the potential is

U(M) = −r1
2
M2

1 − r2
2
M2

2 +
u11
4
M4

1 +
u12
2
M2

1M
2
2 +

u22
4
M4

2 . (2.8b)
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Figure 2: (a) Contour plots giving the time evolution of the square anisotropy (001) surfaces, where a
nearly regular lattice of four-sided pyramids forms. (b) Corresponding snapshots of the edge lattice, with
dislocations (topological defects of the edge lattice). The dislocations move, and their motion mediates
coarsening as discussed in the text. (This figure is reproduced from Ref. [18].)

On the other hand, the interface dynamics equation (2.1) can be shown to be equivalent

to

∂h(x, t)

∂t
= − δFeff

δh(x, t)
, (2.9a)

provided one makes a more arbitrary assumption — viz. that the vertical asymmetry

terms in Eq. (2.4) are ignored. In Eq. (2.9a), the Feff is an effective free energy func-

tional of the form Feff (h) = FNE + FSD, with

FNE =

∫

d2x U(M(x)) (2.9b)

contributing the non-equilibrium current JNE(M) via Eq. (2.6) [with u12 = u21] and
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Eq. (2.2) to Eq. (2.1), and

FSD =

∫

d2x

[

κ11
2

(

∂2h

∂x21

)2

+ κ12

(

∂2h

∂x1∂x2

)2

+
κ22
2

(

∂2h

∂x22

)2
]

(2.9c)

contributing the surface diffusion JSD term via Eqs. (2.5) and (2.3) to Eqs. (2.2) and

(2.1). We stress that for u12 6= u21 there is no Feff that would generate the dynamics

via Eq. (2.9a). The selected facet slope vectors are commonly assumed to correspond

to the zeros of J
NE(M), but there are known exceptions to this “zero current rule”

[25, 26]. Indeed, this rule necessarily holds only for the surface dynamics governed by

an effective free energy. Thus from Eq. (2.9a) it can be shown that

dFeff

dt
= −

∫

d2x

(

∂h

∂t

)2

6 0 , (2.10)

so Feff generally decreases with time. This energy minimization is achieved by the

interface breaking up into nearly flat (vicinal) growing facets: on a flat facet the surface

diffusion “free energy” FSD > 0 given by Eq. (2.9c) reduces to zero, whereas the non-

equilibrium current “free energy” FNE given by Eq. (2.9b) is minimized by selecting

the slopes that minimize the local potential U(M). Thus from Eq. (2.8a), JNE = 0
at the slope vectors of the selected facets, so the slope vector M = ∇h plays the role

of the order parameter in the effective free energy Feff that favors the development of

growing facets with preferred slope. The effective free energy in excess of its absolute

minimum is localized at the edges between the selected facets [18, 28]. An edge of

length l contributes the excess effective free energy proportional to its length — i.e.

∆Feff = σl , (2.11)

where σ is the edge line tension easily calculated for static edges (∂h/∂t = 0) between

various types of facets [18,28]. During the surface coarsening process, the facets grow

and the total length of all the edges present on the surface decreases in time, yield-

ing a decrease of Feff in accord with the inequality in Eq. (2.10). Thus the interface

coarsening dynamics in the epitaxial growth can also be viewed as a process of edge

extinction, as originally emphasized in [18] — cf. Figs. 2, 3 and 4 here. This allowed us

to provide simple analytic explanations for the coarsening laws observed in numerous

experiments and simulations on crystal surfaces with various symmetry — cf. § 3.

Indeed, the often presumed vanishing of the non-equilibrium current on preferred

facets, a major feature frequently attributed to the multilayer epitaxial growth, is actu-

ally only mandatory for models with an underlying effective free energy. In its absence,

the vanishing of the non-equilibrium current on preferred facets (although still possi-

ble) is no longer mandatory. Further, by lifting the restriction u12 = u21, which is not

required by the (110) surface symmetry, our studies of the model (2.6) revealed the

existence of the so-called Buckled Rippled interface state that carries nonzero (persis-

tent) surface currents [25, 26] — cf. § 4.1. This state exhibits a periodic arrangement
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of surface current vortices, reminiscent of self-organized convective flow patterns in

hydrodynamic systems. The existence of the Buckled Rippled interface state on the

rectangular symmetry (110) surfaces (where u12 6= u21, so no effective free energy)

shows that the frequently stated “axiom” of zero surface current on the selected in-

terface structures is not generally true. On the other hand, the diagonal symmetry

of the square symmetry (001) surfaces implies the condition u12 = u21 and the non-

equilibrium current of the form in Eq. (2.7), as noted above. In the absence of the

higher order terms indicated by the dots in Eq. (2.7), this current is generated by the

potential given in Eq. (2.8b), which for (001) surfaces reduces to

U(M1,M2) = −r
2

[

(M1)
2 + (M2)

2
]

+
u

4

[

(M1)
4 + (M2)

4 + 2b(M1)
2(M2)

2
]

(2.12a)

that may be rewritten in terms of polar coordinates (M1 =M cos θ,M2 =M sin θ) as

U(M,θ) = −r
2
M2 +

u(3 + b)

16
M4 +

u(1− b)

16
M4 cos 4θ , (2.12b)

where r, u and b are the parameters in Eq. (2.7). We note that the anisotropy parameter

b must satisfy the condition b > −1 to ensure that the local potential given by (2.12b) is

bounded from below. For b = +1, this potential depends only on the slope magnitude

and becomes isotropic (θ-independent), yielding the pyramidal growth seen in Fig. 3

with the coarsening exponent nc = 1/3 [18] — cf. § 3.1. From Eq. (2.12b), for any

b 6= 1 the potential has eight extremes (four minima and four saddle points), when

from Eq. (2.8a) the non-equilibrium current vanishes. For b < 1, the local potential

given by (2.12b) has four stable minima at [M1,M2] = [M0 cos(θn),M0 sin(θn)], with

M0[2r/u(1 + b)]1/2 and θn = 450 + (n − 1) · 90◦ for n = 1, 2, 3, and 4, yielding the

pyramidal growth seen in Fig. 2 where the coarsening exponent is nc = 1/4 [18,19] —

cf. § 3.2. For b = +1, the energy minimum set degenerates into the circle with radius

M0 = [r/u]1/2, reflecting that the model becomes isotropic for this special value of b.
For b > +1, the model potential given by (2.12b) is again anisotropic however, with

new locations of the potential minima at [M1,M2] = [M0 cos(θn),M0 sin(θn)], where

M0 = [r/u]1/2 and θn = (n − 1) · 90◦ for n = 1, 2, 3, and 4. All of these observations

directly correspond to those made below Eq. (2.7), in terms of the non-equilibrium cur-

rent zeros. However, the description in terms of the potential U(M) makes it easy to

examine the stability properties of the various current zeros, and to directly determine

which of them are stable — i.e. represent the minima of the effective free energy even-

tually reached by the system due to the dynamical energy minimization [cf. Eq. (2.7)].

The preferred value of the slope thus corresponds to the minimum of the local po-

tential U(M). Consequently, the slope vector M = ∇h is an order parameter of the

effective free energy Feff , which favors the development of growing facets with pre-

ferred slope. Within the effective free energy framework, the development of growing

pyramids with facets of preferred slope can thus be viewed as a phase ordering pro-

cess, similar to those seen in magnetic systems [20]. Pyramid facets are analogous to

magnetic domains that grow as some power of the time, with edges between two facets
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Figure 3: (a) Contour plots giving the time evolution of the isotropic surface, where nearly flat facets
bounded by edges are evident. (b) Corresponding snapshots of the edge network. There are no preferred
directions for the orientation of the edges. The structural length-scale of the edge network λ(t), comparable
to the facet size or lateral pyramid size, grows in time. (This figure is reproduced from Ref. [18].)

analogous to the domain walls between two magnetically ordered domains, so edge ex-

tinction resembles the extinction of the magnetic domain walls [20]. Importantly, it is

the extinction of facet edges favored by the effective free energy minimization implied

by Eq. (2.10) that governs the interface coarsening dynamics — cf. § 3 and § 4.3 of this

review.

If the local potential U were only to depend upon the magnitude of the slope |M|,
i.e. U(M) = U(|M|), by this rotational symmetry the non-equilibrium current would

vanish on a circle in the order parameter space (M1,M2). Such an isotropic model is

certainly not realistic for the growth on real crystalline surfaces. For realistic surfaces

with hexagonal or quadratic symmetry, the local potential depends on both the mag-

nitude |M| and the polar angle θ of M, as exemplified above by the model potential

in Eq. (2.12). Thus a realistic U(M) may only have a discrete set of minima; and for

the hexagonal symmetry (111) crystal surfaces the local potential has the symmetry
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Figure 4: (a) Contour plots that depict the time evolution of the hexagonal symmetry (111) surfaces. Note
the presence of facets bounded by edges. (b) The edge network on a small portion of the growing surface
for the hexagonal symmetry surfaces, where the edge orientations are mastered by the six-fold anisotropy of
the (111) surface. (This figure is reproduced from Ref. [18].)

property

U(M) = U(|M|, θ) = U

(

|M|, θ + 2π

6

)

, (2.13)

hence U(M) must have (at least) six minima corresponding to six preferred facet orien-

tations that may appear in the growth process — cf. Fig. 4. Likewise, for surfaces that

have square symmetry such as the (100) surface, the local potential has the symmetry

property

U(M) = U(|M|, θ) = U

(

|M|, θ + 2π

4

)

, (2.14)

when U(M) must have (at least) four minima, corresponding to four preferred orien-

tations of the facets that may appear in the growth process on this type of surface.

In § 3, we review the results obtained in Ref. [18] from the effective free energy

modeling for the case of high symmetry (001) and (111) crystal surfaces — and also

for idealized isotropic surfaces that appear at special critical points, such as b = +1 in
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the model potential in Eq. (2.12). However, the assumption of an effective free energy

limits the generality of the modeling, by imposing the condition (2.8a) on the form of

the non-equilibrium current vector, equivalent to the constraint

∂JNE
i

∂Mj
=
∂JNE

j

∂Mi
(2.15)

on the components of the non-equilibrium current (i, j = 1, 2). For i = j, Eq. (2.15) is

obviously identically satisfied — but not generally for i 6= j on realistic crystal surfaces,

as there is then no physical or symmetry reason for that. However, the inequality

∂JNE
1

∂M2
6= ∂JNE

2

∂M1
(2.16)

should generally hold. With the model current given by Eq. (2.6) for (110) surfaces, a

particular consequence is that u12 6= u21, leading to the existence of the unusual Buck-

led Rippled state that carries nonzero surface current [25,26] — cf. § 4.1. In this state,

none of the zeros of JNE(M) is stable, so none of the zeros can be selected [18]. The sit-

uation where all zeros of JNE(M) are unstable cannot be realized within a model where

the non-equilibrium current is generated by an effective potential, as in Eq. (2.8a).

Other interesting effects related to the nonexistence of an effective free energy can

emerge due to the vertical growth asymmetry. We recall that vertical asymmetry contri-

butions from Eq. (2.4) in the interface evolution equation cannot be incorporated into

the dynamics of the form given by Eq. (2.9a), governed by effective free energy. Inter-

esting physical phenomena induced by these VA terms, and also the non-equilibrium

current terms violating Eq. (2.15), indeed arose in simulations [27,29]. We review our

results on these effects in § 4 for (110) surfaces, and in § 5 for (001) surfaces.

3. Interface Coarsening as the Extinction of Facet Edges

In this section, we discuss major concepts and physical ideas that emerged from

simulations of interface dynamics in the epitaxial growth on (111) and (001) surfaces

and also on isotropic surfaces [18], based on the dynamics governed by an effective free

energy. As mentioned in the Introduction, numerous experiments on (111) and (001)

surfaces produce the coarsening exponents obtained in Ref. [18] within the effective

free energy framework. (We defer until § 4 and § 5 a discussion of effects that cannot

be incorporated within the effective free energy framework, as under some conditions

these effects are irrelevant for the long time scale dynamics of interface coarsening.)

3.1. Coarsening of isotropic surfaces and (111) crystal surfaces

The simulations of Ref. [18] indicated that the epitaxial growth on both isotropic

and hexagonal symmetry (111) surfaces exhibits a scaling behavior characterized by
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the presence of a single characteristic length-scale — viz. the pyramid size λ(t), grow-

ing in time according to a power law λ ∼ tnc . The simulations suggest that the growth

of this characteristic length scale is governed by the same coarsening exponent nc ∼= 1/3
for both isotropic and hexagonal symmetry (111) surfaces [18]. A major outcome of

these simulations was that they motivated a simple kinetic theory to qualitatively ex-

plain this scaling behavior. This theory assumes (corroborated by the simulations) that

the effective free energy of the growing interfaces is localized within edge networks

that form across the interface, both with and without (hexagonal) spatial anisotropy

present — cf. Figs. 3 and 4. The central theoretical idea here is to relate the dynam-

ics of the coarsening process to the rate of extinction of the effective free energy rich

regions, which are the edges between the facets of the growing pyramids. This is il-

lustrated in Figs. 3 and 4 from the simulations, depicting the interface in terms of the

density of the effective free energy discussed in § 2. The free energy in excess of the

free energy minimum indeed appears to be localized in the facet edges and described

by Eq. (2.11). The effective free energy per unit cell (pyramidal motif) of this edge

network, with the cell base size ≈ λ(t) ∼ typical pyramid size, is localized in the few

facet edges of a single pyramid. From Eq. (2.11), the effective free energy of an edge

with typical length λ is proportional to the length of the edge — i.e.

Fedge = σλ , (3.1)

where σ is the edge line tension. As there is about one edge per area ∼ λ2 (cf. Figs. 3

and 4), the effective free energy per unit base area is

Fu.a. =
Feff

AB
≈ Fedge

λ2
=
σ

λ
, (3.2)

where AB denotes the base area of the film. Next, we invoke Eq. (2.10), which implies

the decay rate of the effective free energy density (per unit area) is proportional to the

spatial average of the squared interface velocity — i.e.

d

dt

Feff

AB
= −

∫

(∂h/∂t)2 d2x

AB
(3.3)

or
d

dt
Fu.a. = −

〈

(

∂h

∂t

)2
〉

. (3.4)

Estimating the typical velocity of the interface as 〈(∂h/∂t)2〉 ≈ (dw/dt)2 where w is the

pyramid height, from Eq. (3.2) and Eq. (3.4) we obtain

d

dt

(σ

λ

)

= −
(

dw

dt

)2

.

Then since w/λ =M0 is the preferred slope, we have

d

dt

(

M0σ

w

)

= −
(

dw

dt

)2

, (3.5)



Interface Dynamics and Far-From-Equilibrium Phase Transitions 313

which for M0σ constant yields on integration

w =M0λ = const. (M0σ)
1/3 t1/3 . (3.6)

Thus for isotropic (111) surfaces, we obtain the coarsening scaling law

w ∼ λ ∼ t1/3 , (3.7)

with coarsening exponent β = nc = 1/3 in accord with the simulation results for the

growth of interface roughness < h2 >1/2∼ w ∼ tβ and the pyramid size λ ∼ tnc [18].

It is illuminating to discuss similarities and differences between MBE growth and

phase ordering processes, such as the domain growth in magnetic systems [20]. In MBE

growth with slope selection, the interface slope vector M = ∇h develops a nonzero

value and thus plays the role of an order parameter. The facets with preferred slopes

that develop in the MBE growth are analogous to magnetically ordered growing do-

mains in the phase ordering process of discrete symmetry magnetic systems, such as

the Ising and anisotropic XY models. The analogue to a domain wall between two mag-

netic domains is an edge that occurs at the intersection of two nearly flat facets with

different slope vectors, say M1 and M2. An edge appears as a straight line segment,

as shown in Figs. 2–4, directed along the vector M1+M2 [18]. Both simulations and

the above analytic results call for a cautious comparison of MBE growth with the phase

ordering phenomena in standard magnetic systems. For example, the scaling law in

Eq. (3.7) with coarsening exponent 1/3 is the same as that for the conserved (type B)

Ising dynamics — cf. the well known Lifshitz-Slyozov law [20]. However, this hardly

explains why we also have the 1/3 exponent for an isotropic local potential U(M) that

is invariant with respect to rotations of the slope vector M. Although the isotropic MBE

model is more like the isotropic X-Y model than an Ising model, the conserved (type

B) dynamics of an isotropic X-Y model has a coarsening exponent of 1/4 [20] — and

so fails to provide an understanding of the 1/3 coarsening law that we find for the

isotropic MBE growth.

The physical origin of this difference between the isotropic MBE model and the XY

model is that the vector order parameter M for the MBE case is a gradient of another

field — viz. the interface height h(x). In the absence of this constraint, for the isotropic

case the effective free energy in Eq. (2.12) would simply reduce to that of an X-Y model.

The isotropic X-Y model has smeared domain boundaries with a completely de-localized

free energy density [20], with the average free energy density given by Fu.a. ∼ 1/λ2

rather than the law in Eq. (3.2). However, the situation substantially changes in the

interface dynamics models due to the constraint M = ∇h. The domain boundaries

then generally form as narrow domain walls, with the edges carrying essentially all

the effective free energy of the system. This free energy localization, similar to that in

Ising systems, eventually yields the law Fu.a. ∼ 1/λ as in Eq. (3.1), which is crucial

for obtaining the 1/3 coarsening law in Eq. (3.7). Unlike the situation in magnetic
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systems, free energy localization in the epitaxial interface dynamics model (i.e. the

existence of facets bounded by sharp, narrow edges) is by no means conditioned by the

presence of anisotropies. Indeed, the narrow edges where the free energy is localized

and the associated 1/3 coarsening power law arise even for isotropic MBE growth, as

documented by the simulations [18]. A long edge is simply a stable stationary solution

of the evolution equation (2.9a), for which δFeff/δh = 0. This equation has solutions

in the form of even narrow edges, for the analytic isotropic MBE growth models in

Ref. [18]. This feature is in marked contrast to ordinary X-Y systems, where sharp do-

main walls may form only in the presence of anisotropies. However, an isotropic MBE

model has narrow domain walls (edges) and energy localization even in the absence of

spatial anisotropies, such as the hexagonal anisotropy of (111) crystal surfaces. The ob-

served 1/3 - coarsening power for the isotropic MBE model is a direct consequence of

this energy localization, implying Fu.a. ∼ 1/λ rather than Fu.a. ∼ 1/λ2 in the isotropic

X-Y model, where there is the 1/4 coarsening law for conserved (type B) dynamics.

How does the presence of anisotropies affect this 1/3 coarsening power law? The

crucial feature is that Fedge ∼ λ, so Fu.a. ∼ 1/λ cannot be altered by the presence

of anisotropies because the edges are narrow (so free energy is localized), even for

zero anisotropy. Thus one could expect that the 1/3 coarsening power law may be

preserved in the presence of anisotropies, as is apparently the case for the hexagonal

anisotropy from the simulations [18]. For this case, the main effect of the anisotropy

is to orient the already (for zero anisotropy) narrow edges. Nonetheless, the resulting

edge networks are still essentially random as in the isotropic case — cf. Figs. 3 and

4. No strong constraints on the edge dynamics are imposed in such random networks,

and the coarsening on the hexagonal anisotropy (111) surfaces varies with the same

power law Eq. (3.7) as in the isotropic case. On the other hand, as discussed in the next

section, square anisotropy present on the (001) surfaces may induce the formation of a

more regular edge structure (the “edge crystal” seen in Figs. 2 and 5), which imposes

special constraints on the dynamics of the edge networks. In such circumstances, the

basic 1/3 coarsening power law may break down, as detailed below.

3.2. Coarsening of (001) crystal surfaces

In marked contrast to (111) surfaces, the simulations of (001) surfaces show that

the pyramids and their facet edges form nearly perfect square lattices disordered by

irregularly placed topological defects — cf. Figs. 2 and 5. Simulations have shown

that these defects are dislocations of the edge lattices, and that the presence of the

dislocations is crucial for the coarsening of the square symmetry (001) surfaces [18].

Without the dislocations, the edge network would form a regular square lattice, an

“edge crystal” with the lattice constant λ(t). The simulations show the presence of

dislocations that systematically move (drift) through this edge lattice — cf. Figs. 2 and

5.

As discussed below, the dislocation drift is caused by the line tension of the edges
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Figure 5: A portion of the network of ridges of the square anisotropy (001) surfaces at two different times.
Note the presence of two dislocation ensembles, where one moves horizontally whereas the other moves
vertically. The arrow points to an unstable bound state between the two dislocations moving in different
directions.

terminating at the dislocation core. Importantly, the drift motion of the dislocations

mediates the coarsening process — i.e. the edge lattice constant λ(t) increases with

time, as can indeed be seen from the dislocation in the upper part of Fig. 2. This

dislocation apparently moves to the right, via a gradual extinction (collapse) of two

horizontal lines of edges terminating at the dislocation core (cf. Fig. 2). In effect, the

total length of the edges in the system decreases and pyramid facets then grow. Note

the presence of larger facets just to the left of the dislocation core, and smaller facets to

the right of the dislocation. As the two horizontal edges terminating at the dislocation

core collapse, three smaller facets transform into one larger facet, and at the same time

the dislocation moves to the right. Thus the interface coarsening process is mediated

by the dislocation motion [18]. Another striking result from these simulations is that

the growth on the square symmetry (001) surfaces exhibits a multi-scaling behavior, as

there are two characteristic length-scales that grow in time with two different coarsen-

ing exponents. One is λ(t) ∼ pyramid lateral size ∼ pyramid height, growing with the

coarsening exponent nc ∼= β ∼= 0.25 [18]. The other length scale ξ(t) is the distance

between the dislocations in the same row of the edge lattice (cf. Figs. 2 and 6), and

this scale grows faster with a different exponent nξ ∼= 0.50 [18]. Kinetic scaling the-

ory explains these coarsening exponents for the square symmetry (001) surfaces [18].

The theory shows that dislocation climbing and annihilation processes occurring across

the edge network are essential to our understanding of the coarsening dynamics on

(001) crystal surfaces. Other possible dislocation processes, such as dislocation-pair

production or the occasional formations of unstable bound states between two disloca-

tions moving in different directions (one vertically, the other horizontally — cf. Fig. 5),

do not significantly affect the coarsening. Indeed, a significant dislocation production

only occurs during the initial (pre-coarsening) stage of the growth. Subsequent pro-

duction of new dislocations is energetically hindered, as that would introduce new
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Figure 6: A schematic representation of the moving dislocations of the edge lattice. Note that a dislocation
may annihilate with an anti-dislocation moving either in the same row (cf. the left side of the figure) or in
a neighboring row of the edge lattice, either above or below the row where the dislocation is moving (cf.
the right side of the figure). This gives rise to q = 3 channels for dislocation annihilations, employed in the
kinetic theory of the interface coarsening dynamics of (001) surfaces.

pyramid edges and cause an increase in the effective free energy. The coarsening on

square symmetry (001) surfaces is then identified as the extinction of pyramid edges

and facets, mediated by drifting dislocations, where the rate of extinction crucially de-

pends on the number of dislocations present across the interface. During the interface

coarsening process, the total number of dislocations decreases with time due to their

annihilations with other dislocations.

The usual assumption that there is only one coarsening length scale in epitaxial

growth was not really questioned prior to our work [18], where we produced a kinetic

theory for the coarsening process on (001) surfaces that carefully takes into account the

existence of two large length scales, λ(t) and ξ(t). This theory explains the coarsening

exponents for the pyramid size, λ ∼ tnc with nc ≈ β ≈ 1/4, reported in previous simu-

lations and in experiments on (001) surfaces. It is directly motivated by the observation

from the simulations that the coarsening on square symmetry surfaces is mediated by

the moving dislocations of the edge lattice. The edge lattice coarsens during the motion

of the dislocations along the x1 or x2 directions. Because the two dislocations ensem-

bles moving along these two different directions are weakly interacting with each other

(and are thus nearly statistically independent), it is sufficient to focus attention on only

one of them — the dislocations moving along the x1-direction, say. Let Nd denote the

total number of these dislocations, which is nearly one half of the total number of all

dislocations. Their surface density per unit base area is thus

nd =
Nd

AB
, (3.8)

where AB denotes the base area of the film as before. The length-scale ξ is the average
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distance between the dislocations in the same lattice row of the height λ, as shown

schematically in Fig. 6. There is just one dislocation on a rectangle with height λ and

width ξ (cf. Fig. 6), so ndλ ξ = 1 such that

nd =
1

λ ξ
. (3.9)

Let L denote the total length of the edges directed along the x1-direction. On an L1-

by-L2 substrate (AB=L1 ·L2), one has L = L1×number of rows =L1(L2/λ), so that

L =
AB

λ
. (3.10)

During the motion of each dislocation with velocity vd, the length L decreases during

the time interval dt by the amount equal to 2 vd dt. (The factor of 2 is due to the two

lines of edges along the x-direction terminating at each dislocation core — cf. Fig. 6.)

As there are Nd dislocations and anti-dislocations moving in the x1 direction, the total

change of L is dL = −Nd 2 vd dt, so that

dL

dt
= −2Nd vd . (3.11)

From Eqs. (3.8), (3.10) and (3.11) one readily obtains

− 1

λ2
dλ

dt
= −2nd vd , (3.12)

where Eq. (3.9) gives the dislocation density nd, whence

1

λ

dλ

dt
=

2 vd
ξ

. (3.13)

The total number of the dislocations Nd decreases in time, due to annihilations with

anti-dislocations (cf. Fig. 6), so we can write (1/Nd)dNd/dt = −1/τ or

1

nd

dnd
dt

= −1

τ
, (3.14)

where τ demotes the mean lifetime of a dislocation before it annihilates with an anti-

dislocation. For example, a dislocation /anti-dislocation pair moving in the same row

with relative velocity 2 vd (cf. Fig. 6) annihilates after a typical time τ = ξ/(2 vd), so on

taking into account only one such annihilation channel one would obtain

1

τ
=

2 vd
ξ

. (3.15)

However, although the anti-dislocation moves in the same row as the dislocation, it

may also annihilate with anti-dislocations moving in the rows immediately above and

below it (cf. Fig. 6), so there are actually q=3 channels of dislocation annihilation. The
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total rate of annihilations is therefore 3 times bigger than given by Eq. (3.15), so (with

q = 3)
1

τ
= q

2 vd
ξ

. (3.16)

From Eqs. (3.14) and (3.16),
1

nd

dnd
dt

= −q2 vd
ξ

, (3.17)

so from Eqs. (3.9) and (3.17) we have

−1

ξ

dξ

dt
− 1

λ

dλ

dt
= −q2 vd

ξ
, (3.18)

and hence from Eq. (3.13)

1

ξ

dξ

dt
= (q − 1)

2 vd

ξ
= (q − 1)

1

λ

dλ

dt
. (3.19)

Thus from (3.19) we have

(1/ξ) dξ/dt

(1/λ) dλ/dt
=
d(ln ξ)

d(ln λ)
= q − 1 ,

and integrating this equation yields

ξ ∼ λq−1 (3.20)

— i.e. ξ ∼ λ2 with q = 3. To proceed, we invoke

vd ∼ 1

λ2
, (3.21)

which states that the dislocation velocity on (001) surfaces is inversely proportional to

the square of the lattice constant λ of the edge lattice, as discussed at the end of this

section and (in a different way) in § 4.3. Thus Eqs. (3.13) and (3.21) yield

1

λ

dλ

dt
=

2vd
ξ

∼ 1

ξλ2
, (3.22)

and hence from (3.20)
1

λ

dλ

dt
∼ 1

λq+1
. (3.23)

Integrating Eq. (3.23) yields

λ(t) ∼ tnc , (3.24)

and from (3.20) and (3.24) we have another scaling relation

ξ(t) ∼ tnξ , (3.25)
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so respectively

nc =
1

q + 1
, (3.26)

nξ =
q − 1

q + 1
. (3.27)

On recalling that there are three channels of dislocation annihilations (q = 3), we get

the following values for the coarsening exponents:

nc =
1

4
and nξ =

1

2
. (3.28)

These analytically derived values agree with the results obtained from the numerical

simulations of MBE growth on square anisotropy surfaces [18]. We note that the aver-

age distance d = 1/
√
nd between dislocations in any direction differs from the length-

scale ξ, which measures the average distance between neighboring dislocations in the

same row of the edge lattice (i.e. along the x-axis). Indeed, d =
√
ξ λ from (3.9), and

hence d ∼ tδ with δ = (nξ + nλ)/2 = 3/8.

We noted in Eq. (3.21) that the dislocation velocity vd is inversely proportional to

the square of the lattice constant λ at the edge lattice. To derive this, consider the core

of the dislocation in Fig. 2, of size ∼ λ. One has vd = λ/t1(λ), where t1(λ) is the time

needed for a dislocation to move a core size distance ∼ λ. During this move, the two

edges just above and below the dislocation core merge and are extinguished. After this

extinction, the dislocation in Fig. 2 moves distance ∼ λ. The time t1(λ) taken for this

process to occur is related to λ via λ ∼ (t1)
1/3, as one can infer by considering the

edge extinction event with the reasoning that led us to Eq. (3.6). Thus t1 ∼ λ3, and

vd = λ/t1 ∼ 1/λ2, as stated in Eq. (3.21). See also § 4.3 for an alternative derivation

of the dislocation velocity law (3.21).

4. Epitaxial Growth and Erosion on (110) Crystal Surfaces:
Far-From-Equilibrium Phase Transitions Between Various Interfacial

States

The far-from-equilibrium interfacial structures formed in the epitaxial growth and

erosion (by molecular beams) on rectangular symmetry (110) crystal surfaces have

only recently attracted attention [30–36]. Rather than pyramids, nearly periodic rip-

pled one-dimensional structures are commonly seen on these surfaces — e.g. for

Fe(110) [32], Ag(110) [30,31], Cu(110) and Rh(110) [33,35]. There are two types of

these rippled states, with wave-vectors oriented along the two perpendicular principal

axes of the (110) surfaces — i.e. the x1 and x2 axes mentioned in § 2. By changing

the growth or erosion conditions such as substrate temperature, erosion flux inten-

sity and energy, it is experimentally possible to drive a transition between the ripples
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oriented along the x1-axis and those oriented along the x2-axis. In addition to the

rippled states, intriguing intermediate interface states have been revealed in these so-

called 90◦ ripple rotation transitions between the two types of rippled states on Ag

(110) surfaces [30,31], and more recently on Cu(110) and Rh(110) surfaces [33,35].

These intermediate states are believed to have a pyramidal character. Exotic pyramidal

structures have also been seen on Al(110), in the form of self-assembled “huts” — i.e.

roof-like pyramids [34].

In our studies [25–28], we discussed the far-from-equilibrium phenomena occur-

ring in multilayer epitaxial growth and ion beam erosion on (110) crystal surfaces.

Within a unified phenomenological model described here in § 2, we managed to ex-

pose a generic multitude of novel interfacial states on (110) surfaces, and also the

far-from-equilibrium phase transitions between these states. On taking into account

the various contributions to the surface current for (110) surfaces considered in § 2,

we take the interface equation of motion Eq. (2.1) in the form

∂h

∂t
=− ∂

∂x1

{

∂h

∂x1

[

r1 − u11

(

∂h

∂x1

)2

− u12

(

∂h

∂x2

)2
]}

− ∂

∂x2

{

∂h

∂x2
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(

∂h

∂x2

)2
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(

∂h

∂x1

)2
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− κ11

(

∂

∂x1

)4

h− 2κ12

(

∂
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)2 ( ∂
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)2
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∂
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2

(

∂

∂x1

)2 ( ∂h
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(

∂
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)2 ( ∂h
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2

(

∂
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)2 ( ∂h

∂x1
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− λ22
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(

∂
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)2 ( ∂h

∂x2
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− λ3
2

∂

∂x1

∂

∂x2

[

∂h

∂x1

∂h

∂x2

]

. (4.1)

This interface evolution equation was solved numerically by a standard Euler algo-

rithm, on adopting finite difference approximations for the spatial derivatives that pre-

serve volume conservation. We employed the standard initial condition (at t = 0)

h(x1, x2, t) = 0 + small random number different at each grid site (x1, x2) ,

corresponding to a nearly horizontal interface close to the h = 0 interface, in a configu-

ration that is unstable due to the ESV effect discussed in the Introduction. The eventual

interface morphologies depend on the values of the model parameters in Eq. (4.1).

Through our analytic arguments and numerical simulations [25–28], Eq. (4.1) has

been employed to derive the generic non-equilibrium phase diagram for (110) surfaces

— cf. Figs. 7–9. The model successfully reproduces the experimentally observed tran-

sitions [30, 31, 33, 35], and the intermediate states between the two types of Rippled

states discussed above — cf. § 4.1 and § 4.2. It predicts a number of intermediate in-

terface states, intervening via consecutive transitions in the 90-degrees ripple rotation
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Figure 7: 3-D views of the interfacial morphologies in the epitaxial growth and erosion of (110) surfaces
from simulations: (a) Ordinary Rippled R state with period λ; (b) Rhomboidal Pyramid RhP state with

periods λ1 and λ2; (c) Rectangular Rippled R(rec) state, with motif a roof-like pyramid (hut) with a long

roof-top edge of length ξ; and (d) Buckled Rippled R(buc) state.

transition between the two Rippled states — cf. Fig. 7. One of these is the Rhomboidal

Pyramid State shown in Fig. 7(b) that we theoretically predicted [25], which was sub-

sequently seen by de Mongeot and coworkers in the epitaxial erosion of Cu(110) and

Rh(110) surfaces [33,35].

In addition, our model yields a number of experimentally interesting intermediate

states, with structural properties somewhere between those of rippled and pyramidal

states. Among them are the Rectangular Rippled states of long roof-like objects (huts),

shown in Fig. 7(c). Theoretically discussed in [25–27], these states have been seen in

the epitaxial growth on Ag(110) [30, 31] and Al(110) [34]. Further, the basic Rect-



322 L. Golubović, A. Levandovsky and D. Moldovan

angular Rippled structure we found, with the checkerboard arrangements of huts and

pits (inverted huts) shown in Fig. 9 below, has been seen in ion erosion experiments

on Ag(110) in Ref. [31] — cf. Fig. 4(d) there, and § 4.2 here for further discussions of

these experiments. We predicted two types of Rectangular Rippled states, with wave-

vectors oriented along the two perpendicular principal axes of the (110) surfaces; and

to elucidate the transition between these states, we generalized the classical Gibbs

phase coexistence rule to situations involving far-from-equilibrium phase transitions in

the absence of an effective free energy governing dynamics, since in realistic growth dy-

namics it typically does not govern the interface dynamics — cf. § 2. Our theory [25,26]

has also revealed the exotic Buckled Rippled interface state shown in Fig. 7(d). Unlike

the usual interfacial states (e.g. see [18, 19, 41] and references there), the interfaces

in the Buckled Rippled state exhibit non-vanishing, persistent surface currents form-

ing a periodic convection-like vortex pattern — cf. § 4.1. This interface state is a

far-from-equilibrium relative of Rayleigh-Benard and other self-organized convective

flow patterns occurring in hydrodynamic systems [42]. We used our model to discuss

the dynamics of the coarsening process in various interfacial states on (110) surfaces,

where in particular the coarsening (growth of the spatial period) of the rippled states

was shown to be mediated by ensembles of climbing dislocations that destroy the per-

fect periodicity of these states — cf. § 4.1 and § 4.3. Within our model, the interfacial

phenomena underlying the enhanced coarsening of the Rhomboidal Pyramid state ob-

served experimentally [33,35] can be also elucidated — cf. § 4.1.

4.1. The multitude of interface states on (110) surfaces

As it stands, the model (4.1) depends on numerous parameters. However, the most

important turn out to be the six parameters emerging from the non-equilibrium cur-

rent (2.6). Moreover, under a simple anisotropic rescaling of the coordinates (x1, x2),

the continuum model Eq. (4.1) can be made to depend on only three dimensionless

parameters — cf. Ref. [26] and Eqs. f(2.15) and (2.16) there. These three parameters

are

a =
r1/

√
u22 − r2/

√
u22

r1/
√
u11 + r2/

√
u22

, b =
u12 + u21
2
√
u11u22

, c =
u12 − u21
2
√
u11u22

. (4.2)

Comparison of the theory [25–28] with experimental phenomenology [30, 31, 33, 35]

shows that the parameter a is the most sensitive to the changes causing the 90◦ ripple

rotation transition between the two rippled states — e.g. changes of deposition (or

erosion) beam flux, beam energy and substrate temperature. The other parameters

b and c in Eq. (4.2) are less sensitive to these changes — i.e. they vary little across

the transition. Indeed, they depend on the uij but not on the ri constants in the non-

equilibrium surface current given by Eq. (2.6); and appear to mainly depend upon the

material used in the experiments exhibiting the transition between the rippled states

R1 and R2. The wave-vectors of these one-dimensionally periodic states are oriented

along the x1 and x2 axes, respectively.
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The kinetic phase diagram of (110) surfaces obtained from our model (4.1) is de-

picted in Figs. 8 and 9, for the case of zero VA (nonzero vertical asymetry effects are

discussed in § 4.2). The phase diagram is marked by two characteristic values of the

control parameter a — viz.

a+(b, c) =
1− b+ c

1 + b− c
and a−(b, c) = −1− b− c

1 + b+ c
. (4.3)

Most of the phase diagram in Fig. 9 below is occupied by the simple rippled states R1

and R2 — cf. Fig. 7(a). The R1 state, which is periodic along the x1 direction, occurs

for a > max[a+(b, c), a−(b, c)] in the phase diagram. This state consists of alternating

R1 facets with slope vectors (+M1,M2 = 0) and (−M1,M2 = 0). The R2 state, which is

periodic along the x2 direction, occurs for a < min[a+(b, c), a−(b, c)]. This state consists

of alternating R2 facets with the slope vectors (M1 = 0,+M2) and (M1 = 0,−M2). For

a fixed value of c, in Figs. 8 and 9 the lines a+(b, c) and a−(b, c) in the (b, a) plane

intersect at the point X where bX =
√
1 + c2 and aX = (

√
1 + c2 − 1)/c. This point

X separates the following two characteristic phase behaviors encountered in the model.

Type A behavior: For b < bX =
√
1 + c2 [or u11u22 > u12u21, from Eq. (4.2)] one has

a−(b, c) < a+(b, c); and in the parameter range

a−(b, c) < a < a+(b, c) , (4.4)

the R1 and R2 rippled phases are both unstable and have two types of qualitatively

different intervening interface structures as follows.

(i) In the range Eq. (4.4), for b < 1 the Rhomboidal Pyramid (RhP ) state develops

[25, 26]. This state is a nearly periodic structure, consisting of four-sided pyramids

with rhomboidally shaped contour lines as shown in Figs. 7(b) and 9, with profile of

form

h(x1, x2) = |M1| |x1|+ |M2| |x2| , (4.5)

within a single period |x1| < λ1/2, |x2| < λ2/2. The rhomboidal angle 2θ between two

of the selected quartet of facet slope vectors (viz. ±M1,±M2) in Figs. 8 and 9) is given

by tan θ =M2/M1. From our model, we find

tan θ =
M2

M1
∼

√

a+ − a

a− a−
(4.6)

so θ → 0 and M2 → 0 as a → a+. As shown in Fig. 8, in this limit the RhP state

continuously approaches the rippled state R1 with facets selected from the doublet of

the form (±M1,M2 = 0), and the R1-to-RhP transition in Figs. 8 and 9 is a Hopf

bifurcation. On the other hand, in the limit where θ → 90◦ and M1 → 0 as a → a−
the RhP state approaches the R2 rippled state with facets selected from the doublet of

form (M1 = 0,±M2) as shown in Fig. 8, and the R2-to-RhP transition in Figs. 8 and 9

is also a Hopf bifurcation.
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Figure 8: Kinetic phase diagram for multilayer epitaxial growth and erosion on (110) surfaces, obtained
from analytic arguments [26]. For each interfacial state, the figure indicates the M -space with stable (full
circles) and unstable (empty circles) zeros of the J

NE(M). R1 and R2 are the two rippled states, RhP

is the Rhomboidal Pyramid state, R
(rec)
1 and R

(rec)
2 are the two Rectangular Rippled states, whereas the

Buckled Rippled state R
(buc)
1 occupies the hatched domain (all of its current zeros are unstable, as depicted

in the inset). For the RhP quartet, the angle θ ranges from zero at the transition to R1 to 90◦ at the
transition to R2. (This figure is reproduced from Ref. [26].)

(ii) For 1 < b < bX and a in the range Eq. (4.4), the so-called Buckled Rippled State

(Rbuc) develops — cf. Fig. 7(d). An unusual feature of this state is that its facets

carry nonzero surface currents [25,26], as discussed later in this section. For this state

domain to exist, it is necessary that bX =
√
1 + c2 > 1 — i.e. that c 6= 0, equivalent to

the condition u12 6= u21 from Eq. (4.2). We recall that this condition is equivalent to no

effective free energy governing the interfacial dynamics — cf. § 2. Thus the peculiar

Buckled Rippled State actually owes its existence to the non-existence of effective free

energy! Furthermore, the condition u12 6= u21 should generally be satisfied on (110)

surfaces. Indeed, from the discussion in § 2 the diagonal symmetry of the (001) surfaces

(that have square symmetry), which would render u12 equal to u21, is not a symmetry

of the (110) surfaces (that have rectangular symmetry). Consequently, the existence of

the Buckled Rippled State domain is a generic feature of the kinetic phase diagram of

(110) crystal surfaces.
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Figure 9: Kinetic phase diagram depicting various interfacial states, in terms of their basic properties (as
obtained from the simulations): surface contour plots, magnitudes of interfacial height Fourier transforms
(FT) corresponding to nearly in-phase diffraction patterns, and slope distributions (SD) in the M -space
corresponding to out-of-phase diffraction patterns. R1 and R2 are the two rippled states, RhP is the

Rhomboidal Pyramid state, R
(rec)
1 and R

(rec)
2 are the two Rectangular Rippled states, and R

(buc)
1 (hatched

domain) is the Buckled Rippled state (its data are shown in Figs. 14 and 17). The RhP rhomboidal angle
2θ ranges from zero at the transition to R1 to 180◦ at the transition to R2. At long times, the four-lobe
FTs of the R(rec) states approach the two-lobe form of the FTs of ordinary Rippled states [see Fig. 13(a)].
The peaks of SD of various states here directly correspond to the stable zeros of JNE(M) in Fig. 8, with

the exception of the R
(buc)
1 state [cf. Figs. 14 and 17]. The phase diagram here is given for a positive

value of the parameter c, without lack of generality — changing the signs of both a and c is equivalent

to exchanging the base plane coordinates x1 and x2. Thus in particular, the R
(buc)
1 state [buckled form of

the R1 rippled state] occurs for c > 0, whereas the R
(buc)
2 state [buckled form of the R2 rippled state, not

shown here] occurs for c < 0. (This figure is reproduced from Ref. [26].)

Type B behavior: For b > bX =
√
1 + c2 [or u11u22 < u12u21 from Eq. (4.2)], one has
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a−(b, c) > a+(b, c); and in the parameter range

a+(b, c) < a < a−(b, c) (4.7)

the R1 and R2 facets are both stable. This multi-stability gives rise to the development

of the so-called Rectangular Rippled States R
(rec)
1 and R

(rec)
2 [25, 26]. Indeed, from

the simulations we find that interesting interface structures formed from both R1 and

R2 facets develop in this range. These structures have rectangular contour lines (cf.

Fig. 9), corresponding to roof-like pyramids (huts) with long roof-top edges, shown in

Fig. 7(c). As shown in Fig. 9, for zero VA there are two kinds of such structures, called

the Rectangular Rippled States R
(rec)
1 and R

(rec)
2 . In the R

(rec)
1 state, the R1 facets grow

faster than the R2 facets, whereas in the R
(rec)
2 state the R2 facets grow faster than the

R1 facets. The difference in growth rates between the facets is related to R1 facets

and R2 facets not being equivalent (symmetry related) to each other. Recall that the

diagonal reflection (x1, x2) → (x2, x1), which would make R2 equivalent to R1, is not

a symmetry of (110) surfaces — cf. § 2. This suggests that in general there is no steady

state interface profile (∂h/∂t = 0) from the dynamics equation (4.1) with the form of a

static edge between the non-equivalent R1 and R2 facets — thus one of them prevails,

as seen in the R(rec) states. Indeed, such a static edge can exist only along the special

line acr(b, c) in the phase diagram in Fig. 8, where

acr =

√

1 + (c/3)2 − 1

c/3
(4.8)

for zero VA [26] (nonzero vertical asymmetry is discussed in § 4.2). A static coexis-

tence between the R1 and R2 facets can be realized only at the phase transition line

between the Rectangular Rippled States R
(rec)
1 and R

(rec)
2 defined by Eq. (4.8) — cf.

Figs. 8 and 9. This phase transition line has also been derived in the spirit of Gibbs’

original phase coexistence argument by requiring a static coexistence between the two

facet types [26], but here the analytic result (4.8) is obtained for non-standard situa-

tions where there is no effective free energy. This result for the phase transition line is

corroborated by simulations [25,26], which confirm the correctness of this generaliza-

tion beyond our original Gibbs argument in the present context where no effective free

energy is involved.

The type A behavior occurring in materials with u11u22 > u12u21, which involves

the formation of the Rhomboidal Pyramid state intervening between the two rippled

states, was theoretically predicted [25] and subsequently observed in epitaxial erosion

experiments on Rh(110) and Cu(110) surfaces [33]. On the other hand, the type B be-

havior occurring in materials with u11u22 < u12u21, with the ripple rotation transition

proceeding through a multi-stable parameter range where Rectangular Rippled states

are formed [25–27], was observed in experiments on the Ag(110) surface involving

both epitaxial growth [30] and ion beam erosion [31]. It is significant that erosion by

molecular beams can be envisioned as a deposition of vacancies, as the same model can
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be used to discuss both epitaxial growth and erosion phenomena. We now discuss prop-

erties of the many interfacial states identified, stressing their experimental significance.

Particularly interesting are theoretical predictions for the behavior of two major

kinds of surface diffraction data — viz. (i) out-of-phase diffraction data, corresponding

to the interface slope (M = ∇h) SD distribution; and (ii), nearly in-phase diffrac-

tion data, corresponding to the magnitude of the square of the interface height h(x, t)
Fourier transform (FT). Especially significant is the Rhomboidal Pyramid (RhP ) state, a

two-dimensionally periodic interface structure of four-sided pyramid-like objects shown

in Fig. 7(b), obtained using Eq. (3.6). The contour lines (step terraces) of these pyra-

mids are rhombi, which sometimes deform into rhomboids if roof-top edges develop on

the pyramids — cf. Fig. 10. The predicted RhP state [25] has since been seen by de

Mongeot and co-workers, in erosion by molecular beams on both Cu(110) and Rh(110)

surfaces [33]. The RhP state has the interface SD (i.e. an out-of-phase diffraction pat-

tern), with a quartet of four equivalent peaks (±M1,±M2) — cf. Figs. 8, 9 and 11.

The RhP motif in Eq. (4.5) implies that the 2D FT of the RhP has dominant peaks

along the q1 and q2 axes, with (i) the set of peaks at wave-vectors (±2π(2n + 1)/λ1, 0);
and (ii), the set of peaks at (±2π(2n + 1)/λ2, 0). Structurally, from Eq. (4.5) the RhP
state is a linear superposition of the two rippled states. Thus its FT (the nearly in-phase

diffraction pattern) is simply the superposition of the FTs of the two rippled states R1

and R2 — cf. Fig. 9. From simulations, at most the four brightest (n = 0) peaks occur-

ring at the wave-vectors (±2π/λ1, 0) and (±2π/λ2, 0) are visible — cf. Fig. 10]. Such

a four-lobe nearly in-phase diffraction pattern is manifest in the simulations, as shown

in the FT magnitude plots of RhP in Figs. 9 and 10(a). All other FT peaks are smeared

out by the positional disorder of the pyramid lattice, which is especially pronounced

in the RhP region close to the R
(buc)
1 state in the phase diagram shown in Fig. 9. The

RhP in-phase diffraction pattern there exhibits only two peaks, except very close to

the RhP -to-R2 transition — cf. Figs. 10(b) and 11(b), and our further discussion be-

low. Such an almost two-lobe RhP near the in-phase diffraction pattern has indeed

been seen, in a recent study where the RhP state occurred in erosion on Cu(110) and

Rh(110) crystal surfaces [35].

The RhP state has a nearly rectangular network of pyramid facet edges — cf.

Fig. 10. The interface structure and coarsening dynamics of the RhP state is simi-

lar to that of the four-sided square pyramid Phase I (with the square network of edges)

on (001) surfaces [18, 29] — cf. Figs. 2 and 5, and § 3.2 and § 5. Indeed, Phase I has

the interface profile given by Eq. (4.5) with M1 = M2. Thus the RhP state, shown

in Fig. 10 on the (110) surfaces in Fig. 9, is essentially a (rhomboidally) anisotropic

version of the square pyramid Phase I on (001) surfaces in Fig. 2. Topologically, these

two states are identical. The simulations show that the coarsening of the RhP state

is mediated by the motion and annihilations of the dislocations (topological defects)

of the network of pyramid facet edges seen in Fig. 10, in a way which is topologically

identical to the coarsening of the square pyramid Phase I on (001) surfaces in Figs. 2
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Figure 10: Rhomboidal Pyramid (RhP ) state. To the left are the interface contour plots; and to the right,
the facet edge plots (contour plots of the magnitude of local interface curvature) with prominent present
dislocations destroying perfect periodicity of the interface profile. Fig. (a) shows the ordinary RhP state,

occurring away from the RhP -to-R
(buc)
1 transition. Fig. (b) shows the intensely rough RhP state occurring

close to this transition (the interface here corresponds to the maximally rough surface found at a = 0.6 in
Fig. 11). Note the qualitative difference between the FTs in the upper and lower panels.

and 5 — cf. § 3.2. In accord with this, from the simulations we find that the interface

width w =< h2 >1/2 grows as w ∼ tβ with β ≈ 1/4, which is the same as for the four-

sided pyramid state on (001) surface discussed in § 3.2. However, we stress that such

coarsening was found in the RhP domain away from the transitions to other interface

states in the phase diagram of Figs. 8 and 9, hence the RhP forms as in Fig. 10(a).

However, a substantially faster coarsening was found in the RhP region close to the

R(buc) state — i.e. in the proximity of the hatched domain in Figs. 8 and 9. This

enhanced roughening of RhP is documented in Fig. 11(a), which gives the interface

width w for several different times versus the parameter a, for a fixed b < 1 close to the

transition to R(buc) at b = 1 in Fig. 9. In Fig. 11(a), the RhP state is between a+ and

a−, whereas for a < a and a > a+ the rippled states are R2 and R1, respectively. The

fastest coarsening was found within the RhP state range a− < a < a+, when the RhP
pyramids eventually grow with a high coarsening exponent β ≈ 0.4 — cf. Fig. 11(a).
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Figure 11: Fig. (a) shows the square of the interfacial width < h2 > versus the parameter a for several
different times — across the transition from the rippled state R2 (for a < a−) to the rippled state R1 (for
a > a+), going through the intermediate Rhomboidal Pyramid state (occurring for a− < a < a+). The
figure is obtained from numerous simulations done along the line b = 0.8, passing close to the transition

line b = 1 from the RhP to the R
(buc)
1 state — cf. Figs. 8 and 9. The inset documents the enhanced

roughening of the RhP state at a = 0.6, with the roughening exponent reaching the value ≈ 0.4 close to
the center of the RhP range. In Fig. (b), to the right are FT magnitudes and SDs found along this ripple
rotation transition for a = 0 (in the R2 state), and for a = 0.4 and 0.8 (both within the intensely rough
RhP range). Note the FTs, the in-phase diffraction patterns of the intensely rough RhP , have just one
pair of peaks as in the R1 state pattern. The other significantly weaker pair of peaks can only be seen close
to the transition to R2 (a = 0.4 here). Note the SDs (i.e. the out-of-phase diffraction patterns) distinguish
the RhP from the R1 state — cf. Fig. 9.

Such an enhanced roughening of the RhP intermediate state, faster than that of the

nearby rippled states (see below), has also been observed in experiments on Cu(110)

and Rh(110) surfaces [33,35]. We stress that the enhanced roughening of RhP occurs

only in proximity to the R(buc) state in Figs. 8 and 9. There the RhP state becomes

highly anisotropic, as seen in Fig. 10(b); and we see that the two RhP state periods

λ1 and λ2 , along the principal axis of (110) surface in Fig. 7(b), significantly differ

from each other. This anisotropy is also manifest in the character of the pyramid facet
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Figure 12: (a) Facet edge plot of the rippled state R1 in the phase diagram domain, where both fork and
knife dislocations are present. (b) Facet edge plot of the Rippled state R2 in the domain where only knife
dislocations occur. Note that the R2 state in Fig. (b) is rotated by 90◦, to facilitate comparison with
Fig. (a). The length scale ξ is the average distance between dislocations along a ripple.

edges in Fig. 10(b), where vertical edges are sharp and connected to each other, either

directly or by frequently present roof-top edges. In contrast, the horizontal edges in

this figure are blunt and disconnected. Due to this positional disorder of the horizontal

edges, the intensely rough RhP structure in Fig. 10(b) is significantly more disordered

than the ordinary RhP structures in Fig. 10(a), and its enhanced roughening is similar

to the fast roughening in the nearby R(buc) state discussed later in this section.

Both the intensely rough RhP and the R(buc) state exhibit two-lobe nearly in-phase

diffraction patterns (i.e. FT’s) as shown in Figs. 10 and 11, and also in Fig. 17 later.

The two-lobe rather than four-lobe FT pattern is due to the typically large aspect ratio

λ1/λ2 and the strong positional disorder of the vertical facet edges seen in Fig. 10(b)

— cf. Ref. [26] for the discussion of this point. Thus the intensely rough RhP state

has nearly the same in-phase diffraction pattern as a simple rippled state. This feature,

found experimentally on Cu(110) and Rh(110) surfaces [33, 35], is documented here

in Fig. 11 from the simulations. Note that this FT (i.e. the nearly in-phase diffraction

pattern) is nearly the same as that of the R1 rippled state, except close to the R2

rippled state transition — cf. Fig. 11(b, middle panel). Consequently, the out-of-phase

diffraction pattern [i.e. the slope distribution in the simulations — cf. Fig. 11(b)]

with the quartet of four equivalent peaks is essential to identify the RhP state, as

confirmed by recent experiments on Cu(110) and Rh(110) surfaces [35]. Our R1 state

here corresponds to the “hot rippled state” (the high temperature one), whereas the

experiments show that the RhP has the same FT as the “cold ripple state” [35] — cf.

also further discussion at the end of this section.

Let us now consider the properties of the rippled states shown in Fig. 7(a). The sim-
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ulations show coarsening of these states mediated by moving dislocations that destroy

the perfect periodicity of their structures as shown in Figs. 12(a) and (b), defining the

interface in terms of the edges formed between alternatingR facets. The dislocations of

the rippled states R1 and R2 are geometrically similar to the dislocations of equilibrium

2D smectic A liquid crystals [43]. However, in the present generically non-equilibrium

(driven) system, the dislocations are prominent dynamical objects that move (climb)

along the directions of the facet edges — cf. Figs. 12(a) and (b). The dislocation

motion is driven by the edge tensions, which are unbalanced at the dislocation cores.

There are two morphologically different types of dislocations in Figs. 12(a) and (b) —

viz. (i) “forks”, with three edges on one side of the core and just one edge on the op-

posite side; and (ii) “knives”, with two edges on one side and no edges on the opposite

side of the core. Thus in both cases there are two extra edges pulling the dislocations,

and the edge tension misbalance causes the dislocations to move along the ripples —

i.e. vertically in Figs. 12(a) and (b). The dislocation motion is discussed analytically

in Ref. [28] — cf. § 4.3 here. Importantly, we find this dislocation motion (climb)

mediates the growth of the ripple phase period λ — i.e. as the dislocation climbs along

the extra edges, it leaves behind enlarged facets [cf. the facet width just above and

below dislocations in Figs. 12(a) and (b)]. Thus the growth of the rippled phase pe-

riod λ is the fusion of the rippled state R facets mediated by climbing dislocations. In

addition to the interface width w and average ripple period λ, the rippled states are

characterized by the coherence length of the ripples ξ , corresponding to the separation

between dislocations along a ripple (cf. Fig. 12).

The ripple coherence length ξ increases with time due to the annihilations of pairs

of dislocations traveling towards each other, as shown in Figs. 12(a) and (b). Con-

sequently, the number of dislocations decreases and the ripple coherence length ξ in-

creases in time. Both λ and ξ are extracted from the simulations by computing the

anisotropic height-height correlation function

K(x1, x2, t) =< h(x1, x2, t)h(0, 0, t) >= (w(t))2 ψ (x1/λ(t), x2/ξ(t)) (4.9)

for the R1 phase, where the function ψ decays in an oscillatory fashion along x1 (lon-

gitudinal correlations), and monotonously along x2 (transverse correlations) — cf.

Fig. 6(c) of Ref. [26] for details. By using the longitudinal and transverse correlations,

from the simulations we find λ ∼ w and ξ grow as power laws in time t — viz.

λ ∼ w ∼ tnλ , ξ ∼ tnξ . (4.10)

By extracting the values of the coarsening exponents β = nλ and nξ, it emerges that

there are two kinetically different sub-domains of the whole rippled phase domain in

the phase diagram in Fig. 9, which are characterized by the different morphologies and

kinetics of the moving dislocations — cf. Figs. 12(a) and (b). Most of this phase dia-

gram in Fig. 9 is occupied by the rippled phase with the dislocations seen in Fig. 12(a),

where both forks and knives climb along the x2 direction. In addition, the simulations
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reveal that dislocations also move along the x1 direction. However, in contrast to the

steady directional dislocation climb along the x2 direction in Fig. 12(a), the dislocation

glide motion along x1 has a random walk character and involves reconnection (topo-

logical changes) of the edges network, turning forks into knives and vice versa — cf.

Fig. 6(d) of Ref. [26]. In the sub-domain of the phase diagram where this reconnec-

tion mechanism is active, from the simulations we find that w ∼ λ and ξ grow as in

Eq. (4.10) with β = nλ = 2/7 and nξ = 4/7, which is further corroborated by analytic

arguments [28] — cf. § 4.3 here. The simulations also reveal the existence of another

sub-domain of the kinetic phase diagram in Fig. 9, where the coarsening of the rippled

phase is enhanced and proceeds with different exponents nλ = 1/3 and nξ = 1/2. This

enhanced coarsening of the rippled state occurs for c 6= 0, and is found in the rippled

state sub-domain below the intensely rough RhP domain as shown in Fig. 9 — e.g. for

a < a−, below the intensely rough RhP in Fig. 11. In this rippled state sub-domain, re-

connections of the facet edges (i.e. the formation of forks out of knives) are suppressed,

as shown in Fig. 12(b) from simulations where only knife-dislocations are present. This

dynamical constraint yields the exponents β = nλ = 1/3 and nξ = 1/2, found in the

simulations and further corroborated by analytic arguments [28] — cf. § 4.3 and the

discussion of Eq. (4.33) there. We note experimental evidence for rippled and RhP
state coarsening, with effective exponents β ≈ 0.35 > nλ ≈ 0.1 [35]. In contrast to the

long time (slope selection dominated) regime with β = nλ, in the experiments the se-

lected facets do not fully reach the selected slope magnitudes as their slope still grows

within the experimental time window [35]. Such early time regimes are theoretically

known to exhibit the coarsening exponent n < β, with typically small n in the range

0.1− 0.2 [22].

The type A behavior, with the RhP and R(buc) states intervening in the transition

between the rippled states, is only one of two possible routes between the rippled states

in the phase diagram in Fig. 9. The other route is the type B behavior, where the tran-

sition between the rippled states R1 to R2 goes through the Rectangular Rippled states

R
(rec)
1 and R

(rec)
2 , comprised of roof-like pyramids (huts) formed out of both R1 and R2

facets — cf. Figs. 7(c), 9 and 13. The basic R(rec) state structure, with the checkerboard

arrangement of huts and pits (inverted huts), has been seen in erosion experiments on

Ag(110) by Costantini et al. — cf. Fig. 4(d) in Ref. [31], for comparison with our

Figs. 9 and 13. The hut sizes λ and ξ were measured along the two (non-equivalent)

principal directions of a (110) surface — cf. Figs. 7(c) and 13. From the simulations,

we find these two length scales grow in time with different power laws — viz. λ ∼ tnλ

with nλ = 1/4 and ξ ∼ tnξ with nξ = 1/2, as corroborated by analytic discussions in

Ref. [28] and § 4.3 here. As w(t) ∼ λ(t) ≪ ξ(t) at long times, the R(rec) pyramid states

may be considered to be a special kind of rippled state with period λ(t), as suggested

by the R(rec) Fourier transforms — i.e. the nearly in-phase diffraction patterns obtained

from the simulations shown in Fig. 13(a), with four peaks at (±q1,±q2) where q1 ∼ 1/λ

and q2 ∼ 1/ξ for the R
(rec)
1 state. However, as ξ(t)/λ(t) diverges at long times, the FT of
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Figure 13: Rectangular Rippled States. (a) Snapshots of facet edge plots of the R
(rec)
2 state and interface

FTs at two different times. Note the presence of rapidly growing horizontal roof-top edges interfacing the
dominant R2 facets [cf. also Fig. 7(c)]. These roof-like pyramids (huts) are terminated on both sides by
small rhomboidally shaped R1 facets, which cluster to form long chains. (b) Sequence of interfacial states

occurring in the R
(rec)
1 to R

(rec)
2 transition (interface contour lines and corresponding facet edge plots). For

a > acr, the R
(rec)
1 state with roof-top edges grows vertically (left panel). For a < acr, the R

(rec)
2 state

with roof-top edges grows horizontally (right panel). At the critical point a = acr, four-sided rectangular
pyramids develop, with no roof-top edges present (middle panel).

R
(rec)
1 approaches the form of the FT of the nearby rippled R1 state, with just two peaks

at (±q1, 0). The length scale ξ(t) is essentially the length of the long roof-top edges

on these roof-like pyramids — cf. Figs. 13 and 7(c). These roof-top edges develop

and grow either along the x2 direction in the R
(rec)
1 state, or along the x1 direction

in the R
(rec)
2 state — cf. Fig. 13(b). The snapshots from the simulations of the R

(rec)
2

state in Fig. 13(a) well document the presence of rapidly growing horizontal roof-top

edges, interfacing the dominant R2 facets. Note that the roof-like pyramids (huts) are

terminated on both sides by small rhomboidally (diamond) shaped R1 facets. A promi-

nent feature of the R(rec) state is that these diamond-like facets cluster to form long

chains — cf. Fig. 13. Due to their presence, the interface structure of the R(rec) states
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is more coherent than that of ordinary rippled states. Indeed, at early times the R(rec)

states appear periodic-like, not only along the λ direction but also along the ξ direc-

tion (unlike the ordinary rippled phase). However, with increasing time the number

of diamond facets clustered into each of the chains decreases, and the diamond facet

chains are less evenly spaced — cf. Fig. 13(a). Consequently, the coherence of the

R(rec) state along the transverse direction (parallel to ripples) decreases in time, and

becomes comparable to that of the ordinary rippled state (with dislocations present).

Further, at long times the four FT peaks of the R(rec) state shown in the left panel of

Fig. 13(a) left panel broaden and eventually merge into just two peaks as shown in

the right panel, and such an FT becomes indistinguishable from that of the ordinary

Rippled state (cf. Fig. 9).

Let us now discuss the transition between theR
(rec)
1 andR

(rec)
2 states in Figs. 8 and 9,

for the case of zero VA (vertical asymmetry); nonzero VA is discussed in § 4.2. Not only

roof-top edges on the rectangular pyramids develop at the transition point between

the R
(rec)
1 and R

(rec)
2 , for precisely at the transition point there are simple four-sided

pyramids without roof-top edges, with a rhomboidal network of edges — cf. Fig. 13.

This critical state is an anisotropic version of the four-sided square pyramid Phase II on

(100) surfaces [18,29] — cf. § 5. Its nearly in-phase diffraction pattern has four peaks

(±q1,±q2), with q1 ∼ q2 ∼ 1/t1/4. The R
(rec)
1 -to-R

(rec)
2 transition line is a far-from-

equilibrium first-order-like transition, at which the non-equivalent R1 and R2 facets of

(110) surfaces coexist [cf. Eq. (4.8)], which is necessary to ensure the structural sta-

bility of the four-sided pyramids developing at the transition point as seen in Fig. 13(b,

middle panel). Indeed, R1 and R2 facets comprising such pyramids can maintain (at

long times) equal sizes and shapes only if the conditions are fulfilled to render the sta-

tionary solution (∂h/∂t = 0) of Eq. (4.1) as the static interface (edge) between two

semi-infinite R1 and R2 facets. As noted in § 4.1, this requirement yields our analytic

prediction for the position of the R
(rec)
1 -to-R

(rec)
2 transition line given in Eq. (4.8), which

is corroborated by simulations — cf. Fig. 13(b). The main features of the ripple rota-

tion transition seen on Ag(110) surface (epitaxial growth) [30] correspond to those

of our R
(rec)
1 -to-R

(rec)
2 transition. Importantly, in the multi-stable region suggested by

the experiments of Ref. [30], it is not simple rippled phases (R1 and R2) but rather

the more complex structures of the Rectangular Rippled states that appear. However,

the intermediate state seen in Ref. [30] on Ag(110) has a nearly in-phase diffraction

pattern (FT) that differs from the critical state seen in Fig. 13(b, middle), whereas the

experimental out-of-phase pattern (SD) is the same as for the state in Fig. 13(b, mid-

dle). This puzzling behavior was elucidated in Ref. [27], where the experimental nearly

in-phase diffraction pattern (as observed in [30] close to the ripple rotation transition)

was shown to emerge due to the vertical growth asymmetry between the huts and pits

(inverted huts) comprising the R(rec) state interfaces. We address these vertical growth

asymmetry effects in § 4.2.
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Figure 14: Rhomboidal Pyramid state [in (a)] and the Buckled Rippled state [in (b)] have similar interface
morphologies — cf. their SDs in M -space, their interfacial contour plots, and corresponding facet edges
plots. For both states, the quartet zeros of the surface non-equilibrium current are on the dashed lines
“guiding eye”. In Fig. (b), the Buckled Rippled state SD has peaks that are off the current zeros (indicated
by open circles). Thus in contrast to the Rhomboidal Pyramid state in the left panel in Fig. (a), the facets
of the Buckled Rippled state carry persistent surface currents — cf. also Fig. 15.

Last but not the least, let us consider the Buckled Rippled R(buc) state seen in

Fig. 7(d), which occupies the hatched domain in the phase diagram in Figs. 8 and

9. In this region, as discussed in Refs. [25, 26], all zeros of J(NE)(M) are unstable, in

contrast to the rest of the phase diagram where at least some zeros are stable — cf.

Fig. 8. The existence of this state defies the common belief that the stable facets with

vanishing J
(NE)(M) dominate the epitaxial growth and erosion with slope selection,

as no facet is stable here! In the region occupied by the R(buc) state in Figs. 8 and 9,

we find a long transient involving ordering of pyramidal chains — cf. the simulation in

Fig. 8(b) from Ref. [26]. The interface eventually selects the shape of a rippled phase

with buckled (wavy) ripples as seen in Fig. 7(d). The buckling breaks the ripples into

smaller facets joined by edges — cf. Fig. 14. Consequently, the R(buc) state is struc-

turally close to the RhP state, with a motif similar to that of RhP from Eq. (4.5), but

with M1 and M2 there not corresponding to a zero of J(NE)(M) — cf. Fig. 14(b).

Thus strikingly, in contrast to the RhP and all other interfacial states discussed
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Figure 15: Persistent surface currents in the Buckled Rippled state, R
(buc)
1 in Fig. (a). In Fig. (c) the current

J1 is plotted versus x2 for a fixed x1, away from tops and bottoms of the buckled ripples of the R
(buc)
1

state. The persistent current is down-hill along the R(buc) facets and it is up-hill along the edges between
the facets. This yields a vortex-like behavior of the surface current, which goes up the edges and circles
back down along the facets. The overall surface current pattern has the character of a vortex lattice as
depicted in Fig. (b), where the currents are indicated atop of the corresponding contour plot of J1 (x1, x2).
For comparison, in Fig. (c) we also plot (by the dashed line) the surface current J1 for the ordinary rippled
phase which approaches zero at long times when the facets become large. (This figure is reproduced from
Ref. [26].)

here, the R(buc) state does not develop facets with slopes where J
(NE)(M) vanishes —

cf. Figs. 14(b) and 15. Rather, as shown in Fig. 15, the facets of the R(buc) state carry

non-vanishing persistent downhill surface currents. The downhill currents in the R(buc)

facets are compensated for by uphill currents flowing along the edges between the

facets — i.e. the net current flux is zero in Fig. 15(c). Due to these current back-flows,

the overall surface current pattern has a vortex-like character, with vortices forming a
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Figure 16: (a) Interface contour plot at the X point (cf. Figs. 8 and 9), exhibiting large huts and pits

arranged as in the R
(rec)
1 state, just to the right of the X point in Figs. 8 and 9. The interface contour

plot obtained in the R
(buc)
1 state, exhibiting large buckled huts and pits arranged as at the X point, which

terminates the R
(buc)
1 range on its right-hand side — cf. Figs. 8 and 9. The R

(buc)
1 state is essentially the

buckled form of the R
(rec)
1 state.

rectangular lattice — cf. Fig. 15(b). Note that the R(buc) state exhibits both clockwise

and anti-clockwise oriented vortices alternating across the surface. This convection-like

surface current pattern driven by incoming atomic fluxes is a far-from-equilibrium rela-

tive of the self-organized fluid patterns in convective hydrodynamic instabilities driven

by heat-fluxes — e.g. Rayleigh-Benard patterns [42]. Unlike such steady hydrodynamic

patterns, the length scales (periods) of the R(buc) state vortex lattice actually grow in

time as the interface coarsens. In the R(buc) state, the distribution of interface slope

vectors approaches a stable form, with maxima at M values off the zeros of J(NE)(M)
— cf. Fig. 14(b). Thus the uncommon R(buc) state does exhibit slope distribution selec-

tion, although there are no stable zeros of J(NE)(M).

From the simulations, we find the R(buc) state exhibits a fast coarsening where the

interface width is w ∼ tβ with β ≈ 0.4, close to the center of the R(buc) range in

Fig. 9. We recall that a similar enhanced roughening is also found in the intensely

rough domain of the RhP phase, occurring close to the R(buc) domain in our kinetic

phase diagram in Fig. 9 (cf. also Fig. 11 and related discussion). Another interesting

structural aspect of the Buckled Rippled state, revealed in the simulations represented

in Fig. 16, is the buckled form of the Rectangular Rippled state. Indeed, from Fig. 16(b)

one can see that the large scale morphology of the R(buc) state is that of the R(rec) state

with large huts and pits (inverted huts) forming a checkerboard structure. However, in

contrast to the R(rec) state, the facets of the huts and pits of the R(buc) state are buckled

— i.e. exhibit an additional modulation, with a wavelength much smaller than the size

of the huts [cf. Fig. 16(b)]. This buckling deformation in the R(buc) state disappears

as the X point in the phase diagram in Fig. 9 is approached — cf. Fig. 16(a). At the

X-point, the interface morphology is that of the R(rec) state.
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In addition to the RhP state, the R(buc) state may qualify as the intermediate state

seen in the erosion on Cu(110) and on Rh(110) surfaces [33, 35]. This is illustrated

in Fig. 17, depicting detailed results of the simulations of the ripple rotation transition

along a line going through the R
(buc)
1 state. Note that this figure is quite similar to

Fig. 11, where this transition goes through the intensely rough RhP state. Thus by

comparison with the nearly in-phase (FT) and out-of-phase (SD) diffraction data on

Cu(110) and Rh(110) surfaces [33, 35], we argue that these experimentally observed

ripple rotation transitions proceed with the intervention of either the intensely rough

RhP state as in Fig. 11 or the R
(buc)
1 state as in Fig. 17. In addition to the diffraction

data, this is supported by the intensely rough RhP and R
(buc)
1 states both exhibiting

the experimentally observed enhanced coarsening with interface width ∼ t0.4. In both

cases, the experimentally observed hot-rippled phase corresponds to our R2 phase. By

decreasing the temperature T , the R2 facets destabilize and the interface transforms

into the RhP or the R
(buc)
1 state. At this point, it is illuminating to recall Fig. 8, and in

particular that the R2-to-RhP transition is a Hopf bifurcation where R2 facets destabi-

lize and transform into the RhP facets that take over the interface morphology. Micro-

scopically, this facet destabilization with decreasing T can be caused by Schwoebel bar-

riers on the kinks on the terrace steps of the R2 facets. These kinks are easily rounded

by adatoms, but only at high enough T (so R2 is stable there). With decreasing T , the

R2 facets destabilize due to the Schwoebel barriers, as the R2 rippled state transforms

into the RhP state. Moreover, a further temperature decrease can destabilize the RhP

facets, and cause the transition into the fascinating R
(buc)
1 state when all flat facets are

unstable — cf. again Fig. 8.

From the above discussion of the atomistic effects underlying the continuum model,

the interface morphology transformations seen on Cu(110) and Rh(110) surfaces [33,

35] reflect one (or both) of the following two chains of far-from-equilibrium phase

transitions.

Chain 1: with decreasing temperature,

R2 → RhP → R
(buc)
1 ; (4.11)

Chain 2: with decreasing temperature,

R2 → R
(buc)
1 . (4.12)

In both chains, R2 is the “hot rippled” state and the R
(buc)
1 is the “cold rippled” state.

Chain 1 has the intensely rough RhP as the intermediate state, manifest through the

experimentally observed quartet slope distribution — cf. Fig. 11. On the other hand,

Chain 2 in Eq. (4.12) does not involve an intermediate state at all, but also reproduces

the experimental fact that the quartet slope distribution occurs in an intermediate tem-

perature range. This is documented by the simulations in Fig. 17, which gives the
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Figure 17: (a) The square of the interfacial width < h2 > versus parameter a for several different times,

across the transition from the rippled state R2 (for a < a−) to the Buckled Rippled state R
(buc)
1 (for

a > a−). This transition does not involve an intermediate state. (This figure is obtained from numerous

simulations done along the line b = 1.1 that goes from R2 directly to the R
(buc)
1 state.) In Fig. (b), FT

magnitudes and SDs found along the ripple rotation transition are shown, for a = 0.2 (in the R2 state)

and for a = 0.38 and 0.44 (both within the R
(buc)
1 range). Note the FTs (i.e. nearly in-phase diffraction

patterns) of the R
(buc)
1 have just two peaks, like the R1 pattern. Nevertheless, the SDs (i.e. out-of-phase

diffraction patterns) distinguish the R
(buc)
1 from the R1 state. Overall, the FTs and SDs of the R

(buc)
1 state

are similar to those of the intensely rough RhP state in Fig. 11. However, note that the forms of the SDs of

R
(buc)
1 are closer or even indistinguishable from those of the R1 state — cf. the SD obtained for a = 0.44,

within the R
(buc)
1 range.

in-phase (FT) and out-of-phase (SD) diffraction patterns for Chain 2 with only R2 and

R
(buc)
1 states involved. Note that the SD of the R

(buc)
1 state changes from the quartet

form occurring near the R2-to-R
(buc)
1 transition to the R1-like doublet form occurring

even before the R
(buc)
1 -to-R1 transition is reached. Thus the fascinating Buckled Rippled

state R
(buc)
1 reproduces the observed behaviors, in both the intermediate (RhP -like)

and in the ultimate low temperature (R1-like) regimes seen experimentally [33,35].
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4.2. Deciphering the role of vertical growth asymmetry

The physics of a thin film interface is naturally affected by the strong qualitative

differences between the media and processes occurring above and below it. This up-

down vertical asymmetry (VA) is an integral part in any realistic model of the interface

dynamics. Epitaxial growth and erosion phenomena, such as discussed in this review,

are no exceptions. For example, VA effects are clearly visible on the interfaces of ho-

moepitaxially grown films, through the difference between the shapes of pyramids and

pits (upside-down pyramids) that develop during the homoepitaxial growth on (001)

and (111) crystal surfaces [44] — recall Fig. 1(b). Experimentally, it is impossible to

“switch VA off” in order to see how much VA really matters. Major effects such as ESV

and slope stabilization enter the continuum theory through surface non-equilibrium,

which by itself does not introduce VA in a fundamental way — cf. § 2. Moreover, under

some circumstances continuum modeling of epitaxial growth and erosion reproduces

major features of the experimentally observed interface dynamics (e.g. coarsening ex-

ponents), even when VA effects are ignored [18,19]. This leads us to a basic question:

Is VA primary or a secondary factor in epitaxial growth and erosion? It is difficult if not

impossible to address this question using microscopic (quasi-atomistic) modeling of the

epitaxial growth phenomena, such as kinetic Monte Carlo simulations or other similar

approaches [10]. Indeed, under a microscopic approach using a step flow model, in

addition to the ESV and slope selection terms of the surface current there is also a VA

current term that is generally nonzero [45] — i.e. one cannot eliminate (switch off)

VA effects. Much like the experiments, realistic microscopic simulations of epitaxial

growth ubiquitously include VA, and thus cannot be used to directly elucidate actual VA

effects per se separately from other effects.

To address the role of VA, we pursued a conceptually different approach based on

the phenomenological continuum model of interface dynamics in Eq. (4.1). In this

approach [27], let us recall the interface is described by its height evolution equation

that is generally of the form

∂h(x, t)

∂t
= vVS(h) + vVA(h) , (4.13)

where the local interface height velocity v(h) is expressed as the sum of vVS(h) =
−vVS(−h) and vVA(h) = vVA(−h) — i.e. its odd and even parts, respectively. The even

part, vVA(h) breaks the vertical reflection (h→ −h) symmetry of the interface dynam-

ics, and thus introduces the VA effects. The separation into these different symmetry

contributions in Eq. (4.13) allows us to directly extract generic VA effects, by compar-

ing results obtained with nonzero VA to those obtained with zero VA. Indeed, within

the continuum model (4.1) for (110) surfaces, it is straightforward to switch off the

VA by setting the λ constants to zero and then compare the results to those obtained

with nonzero λ constants. As mentioned, such a comparison is virtually impossible in

experiments and microscopic kinetic simulations. In particular, we have explored the
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role of VA in epitaxial growth by considering in depth the effects on the growth and

erosion on (110) crystal surfaces [27].

The most interesting VA effects were found in the type B behavior, where there is

both stable and unstable facet behavior and the Rectangular Rippled states R
(rec)
1 and

R
(rec)
2 are formed — cf. § 4.1. We recall that these interface states are checker-board

structures of alternating rectangular pyramids and pits — cf. Figs. 7(c) and 13(b). Un-

like the simple R1 rippled state for example, a rectangular pyramid of the R
(rec)
1 state

not only incorporates the long R1 facets but also the significantly smaller metastable

R2 facets [25, 26]. Our Rippled Rectangular pyramid structures in Fig. 13(b) can be

seen in the STM images obtained in erosion experiments on Ag(110) — cf. Fig. 4(d)

of Ref. [31]. For the type B behavior seen in the ripple rotation transition on Ag(110)

surface, it is shown in Ref. [27] that the surface diffraction patterns and underlying

surface morphologies are strongly affected by vertical growth asymmetry. These find-

ings, in agreement with the experimental data [30,31], provide the first clear evidence

that VA plays a significant role in epitaxial growth and erosion on crystal surfaces. It

has long been recognised, for example on (001) surfaces, that VA produces differences

between the shapes of four-sided pyramids and pits (inverted pyramids) [44]. How-

ever, VA effects on interface structure and dynamics are still debated, and a better (but

likely incomplete) understanding has only begun to emerge quite recently for the case

of high symmetry (001) surfaces [29]. Our study [27] was the first in depth discussion

of VA effects for the case of low symmetry (110) crystal surfaces, where it emerged that

VA plays an essential role in the range where the Rippled Rectangular states form. Due

to VA the ripple rotation transition is smeared out and extends over an extended pa-

rameter range. The transition point, at which the qualitative change of nearly in-phase

diffraction pattern (surface Fourier transform magnitude) occurs, turns out to differ

from the transition point at which the qualitative change of out-of phase diffraction

pattern (facet slope distribution) occurs. At the former transition point, the four-lobe

nearly in-phase diffraction pattern occurs with the four peaks along the principal axes

of the (110) surface, in accord with experiments on Ag(110) [30]. Such a pattern

and the underlying surface morphology are different from those occurring with zero

VA shown in Fig. 13(b, middle panel). This theoretical finding, and its consistency with

experiment, demonstrates for the first time that VA can induce the formation of unique

surfaces morphologies that would otherwise be absent (with zero VA ). Moreover, on the

two sides of the extended ripple rotation transition we find two interesting interface

states, which are qualitatively altered forms of the Rectangular Rippled states. These

two novel interface states are both induced by the VA, and correspond well to the in-

terface morphologies seen in STM images [31]. One exhibits an enhanced roughening,

which was seen in the experiments on Ag(110) surface [31]. This intensely rough inter-

face state is an exotic alteration of the rectangular rippled R
(rec)
1 state, with rectangular

pyramids replaced by arrays of small (nearly) square shaped pyramids packed between

long rectangular pits. The other interface state revealed in Ref. [27] is an altered form
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of the rectangular rippled R
(rec)
2 state. It has depressed pit sizes, where the roof-top

edges of elongated worm-like mounds are decorated by exotic arrays of small rounded

mounds, but does not exhibit enhanced roughening. Due to the difference between the

roughening character of these two exotic states, the interface data are highly asymmet-

ric across the ripple rotation transition, as seen in the experiments on Ag(110) [30,31].

The results in Ref. [27] reviewed below were obtained by simulations and analytic

arguments using the general continuum model Eq. (4.1), for the growth and erosion

of (110) crystal surfaces. The VA enters the model through terms that have coefficients

labeled in Eq. (4.1) as λij — cf. also Eq. (2.4). By an anisotropic rescaling of the

coordinates (x1, x2), the contributions to the model (4.1) that originate from the non-

equilibrium surface current JNE in Eq. (2.6) can be made to depend on only the three

dimensionless parameters (a, b, c) met in § 4, as discussed in Ref. [26] — cf. Eqs. (2.15)

and (2.16) there. In the resultant rescaled model, J
NE is given by Eq. (2.6) with

r1 = 1 + a, r2 = 1 − a, u11 = u22 = 1, u12 = b + c, u21 = b − c as employed hereafter.

Preferred interface slopes correspond to zeros of JNE(M), and in the rescaled model

the R1 doublet of facets that gives rise to the R1 rippled state occurs at the slopes

M1 = ±
√
1 + a, M2 = 0 . (4.14)

Likewise, the R2 doublet of facets giving rise to the R2 rippled state occurs at the slopes

M1 = 0, M2 = ±
√
1− a . (4.15)

The slopes in Eqs. (4.14) and (4.15) are shown in Fig. 18(a). Importantly, the R1 and

R2 facets in Eqs. (4.14) and (4.15) are both stable for the parameter a in the range

displayed in Eq. (4.7) — viz.

a+(b, c) < a < a−(b, c) ,

with a+ = (1 − b + c)/(1 + b − c) and a− = (1 − b − c)/(1 + b + c). For a+ < a− (i.e.

for b >
√
1 + c2), the multi-stable type B behavior with the Rectangular Rippled states

R
(rec)
1 and R

(rec)
2 develops even for zero VA (cf. Refs. [25,26] and § 4.1 here). However,

in [27] the primary interest was in VA effects on the interface morphologies occurring

in this range. The results of the simulations revealed that VA effects are essential to

elucidate the experiments that reported the ripple rotation transition on the Ag(110)

crystal surface [30,31]. Within our model, as in homoepitaxial growth experiments on

the Ag(110) [30], the transition occurs within a multi-stable system parameter range

where the R1 andR2 facets are stable. The slopes of these facets as given by Eqs. (4.14)

and (4.15) are depicted in Fig. 18(a), versus the control parameter a. The facet slope

and multi-stability behavior seen in our Fig. 18(a) are in remarkable qualitative agree-

ment with that seen on Ag(110) with changing substrate temperature (cf. Fig. 3(a)

of Ref. [30]), provided a is identified as a temperature-like control parameter in the

experiments. As discussed in § 2, the VA current is a curvature current that vanishes
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Figure 18: Multi-stable range involved in the transition from the R
(rec)
2 to the R

(rec)
1 state. (a) Variations of

the slopes of the R1 and R2 facets, respectively M1 =
√
1 + a and M2 =

√
1− a, versus the temperature-

like dimensionless parameter a. Facet slopes are shown by thick (thin) lines for stable (unstable) facets. Both
R1 and R2 facets are stable for a in the range a+ < a < a−. (b) Variation of the square of the interface
width < h2 > obtained from the simulations, given by solid lines for several different deposition times versus
the parameter a (for nonzero VA). Labeled are the four characteristic values of a — viz. a3 < a2 < a1 < a0

as discussed in the text. (This figure is reproduced from Ref. [27].)

on flat facets, so does not affect the magnitudes of the selected slopes of the flat facets

R1 and R2. They are determined purely by the form of the non-equilibrium current in

Eqs. (4.14) and (4.15) depicted in Fig. 18(a). Nonetheless, the VA does qualitatively

affect the long length-scale interface morphology in an ample range around the tran-

sition — compare Fig. 20 obtained with a nonzero VA and Fig. 13(b) obtained with

zero VA. As detailed hereafter, the experimental data [30, 31] are in accord with the

predictions from our theory provided the VA is incorporated into the modeling. Of practi-

cal significance are the experimental surface diffraction patterns [30] — i.e. the nearly

in-phase and out-of-phase diffraction patterns, corresponding to the surface Fourier

transform (FT) magnitude and slope distribution (SD) obtained from the simulations

respectively. Here we show that various experimental data on Ag(110) growth [30]
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and erosion [31] can be understood physically only if nonzero VA is incorporated in

the theory. Unlike the simple rippled states, each of the two R(rec) states involves both

R1 and R2 facets — cf. Figs. 7(c) and 13(b). These two facet types are not equivalent

(i.e. not symmetry related) to each other, so in general they can coexist only across the

moving edges between them [25, 26]. Due to the edge motion in the R
(rec)
1 state, the

R1 facets grow faster than the R2 facets, whereas in the R
(rec)
2 state the R2 facets grow

faster than the R1 facets. This edge motion produces the surface morphologies seen

in the Rectangular Rippled states — cf. Fig. 13. Only at a specific (critical) point can

there be a static edge between the R1 and R2 facets — cf. Fig. 13(b, middle panel).

For zero VA, this point occurs at a = acr, with acr as in Eq. (4.8). For a = acr, the

interface dynamics equation (4.1) has a steady solution (∂h/∂t = 0), corresponding to

a static edge between semi-infinite R1 and R2 facets. Such an edge is an analogue of

the classical equilibrium Gibbs interfaces that only exist at phase transitions points. For

zero VA, the critical value of the control parameter a in Eq. (4.8) corresponds to the

transition point between the R
(rec)
1 and R

(rec)
2 states [25, 26]. At this critical point, R1

and R2 facets can coexist across the static edges, which allows the non-equivalent R1

and R2 facets to grow at the same rate. Instead of Rectangular Rippled structures, the

checker-board structure of four-sided pyramids arises — cf. Fig. 13(b, middle panel),

from our zero VA simulations at a = acr. Thus by a Gibbs-like argument (with equilib-

rium Gibbs’ interfaces between different phases corresponding to static edges between

non-equivalent facets), one can analytically locate the phase transition point given by

Eq. (4.8) — and further, elucidate in great detail the far-from-equilibrium phase tran-

sitions encountered in epitaxial growth and erosion.

For nonzero VA, these far-from-equilibrium transitions can also be discussed by

searching for the static edge solutions of Eq. (4.8). However, for nonzero VA an ad-

ditional complexity emerges, because there are then two distinct edge types between

the R1 and R2 facets as shown in Fig. 19 — viz. (i) convex edges, such as the uphill

edges emerging from the pit-bottom edges of the rectangular shaped pits of the R(rec)

state in Fig. 19(a); and (ii) concave edges, such as the downhill edges emerging from

the roof-top edges of the rectangular shaped pyramids of the R(rec) state in Fig. 19(b).

For zero VA, these two types of static R1-R2 edges are simply related to each other,

because if h(x) is a static solution of Eq. (4.1) then so is −h(x). Thus the static concave

downhill edge is directly obtained from the static convex uphill edge, simply by vertical

reflection of the interface profile h(x). For zero VA, both types of static edges exist for

the same critical value of the parameter a given in Eq. (4.8). However, with nonzero VA,

the vertical reflection h→ −h ceases to be a symmetry of the interface dynamics — i.e.

if h(x) solves Eq. (4.1), then −h(x) does not (for the same value of a). Consequently,

for nonzero VA the necessary value of a for the existence of the static convex uphill

edge [cf. Fig. 19(a)] is generally different from the necessary value for the existence of

the static concave downhill edge [cf. Fig. 19(b)]. Let us call these two special (criti-

cal) control parameter values aconvex and aconcave where aconvex 6= aconcave unless VA is

zero, when aconvex and aconcave both equal the identical critical value given by Eq. (4.8).



Interface Dynamics and Far-From-Equilibrium Phase Transitions 345

Figure 19: (a) Convex uphill edges between R1 and R2 facets, emerging from the long edges along the
bottoms of rectangular shaped pits. For a 6= aconvex the uphill edges move, so pits grow in length either

along the x1-direction (like in the R
(rec)
1 state) or along x2-direction (as in the R

(rec)
2 state). (b) Concave

downhill edges occur between R1 and R2 facets, emerging from the long edges along the roof-tops of
rectangular shaped pyramids. For a 6= aconcave, the downhill edges move so the roof-tops grow in length,

either along the x1-direction (like in the R
(rec)
1 state) or along the x2-direction (like in the R

(rec)
2 state).

(This figure is reproduced from Ref. [27].)

The existence of two distinct critical points is evidently the major factor responsible

for the complex VA-induced interfacial morphologies [27]. The actual values of aconvex
and aconcave were calculated analytically in Ref. [27] by applying the generalized Gibbs

argument — i.e. by finding the necessary conditions for the existence of static edge

solutions of the interface evolution equation (4.1) with nonzero VA. For a positive VA,

the likely situation in epitaxial growth and erosion, we have

aconvex < aconcave . (4.16)

On (001) surfaces for example, positive VA values favor rounder tops of four-sided pyra-

mids and sharper four-sided pyramidal pits, relative to zero VA morphologies with no

difference between tops and pits widths — cf. Fig. 1(b). Experiments on (001) surfaces

indeed show these typical features (for a positive VA), well illustrated by micrographs

of the checkerboard structure of alternating four-sided pyramids and pyramidal pits on
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Cu(001) surfaces [44]. A similar effect for positive VA is seen in the facet edge widths,

with convex edges narrower and concave edges broader (relative to their widths at

zero VA) — cf. Fig. 26(i) in § 5.

To elucidate the full meaning and implications of the points aconvex and aconcave for

interface morphology, we carried out extensive numerical simulations using Eq. (4.1).

These simulations revealed the existence of four characteristic a parameter values we

ordered as a3 < a2 < a1 < a0, related to the VA — cf. Figs. 18, 20, and 21. There is

a very rippled rotation transition in a narrow range between a2 and a1. Quantitative

comparisons between our analytic results and the simulations showed that aconvex ≈ a3
and aconcave ≈ a2 ≈ a1. From Eq. (4.16), on decreasing the control parameter a the sys-

tem first encounters aconcave, at which the concave downhill edges emerging from the

roof-tops of the R
(rec)
1 state rectangular pyramids become static — cf. Fig. 19(b). On

further decreasing a, the system encounters aconvex, at which the convex uphill edges

emerging from the bottoms of the R
(rec)
2 rectangular pits become static — cf. Fig. 19(a).

Consequently, with decreasing control parameter a there are several qualitatively

different interface morphologies due to these features, encountered as follows.

(i) For a sufficiently greater than aconcave > aconvex, both the roof-tops and pit bottoms

grow along the x2 direction, quite like when VA is zero — cf. Fig. 13. Thus the interface

is then in the R
(rec)
1 state, as in the simulations for a > a0 > aconcave shown in Fig. 20(f).

(ii) For a ≈ aconcave > aconvex, the concave downhill edges emerging from the roof-tops

become nearly static — cf. Fig. 19(b). This feature hinders the growth of roof-tops in

the range a1 < a < a0, but as a > aconvex the pits are still prone to grow in length.

This is exactly the situation seen in simulations shown in Fig. 20(e) for a in this range,

which show the growth of long pits and also that long rectangular roof-tops cease to

develop — rather, they break into arrays of small four-sided pyramids as in Fig. 20(e).

This is the altered form of the R
(rec)
1 state that we call the AltR

(rec)
1 state, shown in

Fig. 20(e) and discussed in more detail below.

(iii) For a ≈ aconvex < aconcave, the convex uphill edges emerging from the pit bottoms

become nearly static — cf. Fig. 19(a). This feature hinders the growth of pits, but as

a < aconcave the roof-tops are prone to grow in length. This is exactly the situation we

see in simulations as shown in Fig. 20(b) for the range a3 < a < a2, showing the growth

of long roof-tops and pit bottoms depressed in size that do not grow substantially with

time. This is the altered form of the R
(rec)
2 state that we call the AltR

(rec)
2 state, shown

in Fig. 20(b) in the range a3 ≈ aconvex < a < a2 ≈ aconcave and also discussed in detail

below.

(iv) For a below aconvex(< aconcave), both the roof-tops and pit-bottoms grow along the

x1direction much as for zero VA, as shown in Fig. 13(b). Thus the interface is in the

R
(rec)
2 state if a < aconvex, as in the simulations for a < a3 ≈ aconvex shown in Fig. 20(a).

In addition to the multitude of interfacial states, there are other consequences to
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Figure 20: Effects of the VA on the interface morphology (given by surface contour plots) and interface

diffraction data (SD and FT), across the transition from R
(rec)
2 to R

(rec)
1 state. (a) The R

(rec)
2 state, with

a checkerboard arrangement of rectangular elongated pyramids and pits (inverted roof-tops). (b) Altered

form of R
(rec)
2 state (worm-like ripples), where the pit sizes are depressed and that arrays of small rounded

mounds form along roof-tops of elongated pyramids. (c) Interface morphology at the point where surface
FT exhibits four peaks of equal magnitude (four-lobe pattern) corresponds to rectangular mounds packed
side-by-side. (d) Interface morphology at the point where surface SD exhibits four peaks of equal magnitude.

(e) Altered form of the R
(rec)
1 state (square-pyramid-like state), where roof-top-like pyramids are replaced by

arrays of nearly square shaped four-sided pyramids packed between longer in size pits (inverted roof-tops).

(f) The R
(rec)
1 state, with a checkerboard arrangement of rectangular elongated pyramids and pits (inverted

roof-tops).

consider. The VA affects the concave uphill edges and concave downhill edges differ-

ently, as they become static at the two distinct values of the system control parameter,

aconvex and aconcave. This produces a complex kinetic phase diagram, as suggested by

the simulation results shown in Fig. 20. In addition to the Rectangular Rippled states

R
(rec)
1 (Fig. 20(f)) and R

(rec)
2 [cf. Fig. 20(a)], the phase diagram involves two VA-

induced interface states — viz. the Altered R
(rec)
1 state [Fig. 20(e)] and the Altered
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Figure 21: 3D views of the real-space interface morphology and the corresponding FTs (i.e. near in-phase
diffraction patterns) for a nonzero VA, at several successive points along the ripple rotation transition

between the Rectangular Rippled states. (a) Altered form of the R
(rec)
2 state where pit sizes are depressed,

whereas arrays of small mounds form along roof-tops. Note that this structure yields a FT that is essentially

the same as that of the R
(rec)
2 state, with just two peaks at (0,±q2) — cf. also, Figs. 20(a) and (b). (b)

The FT forms with two pairs of peaks, at (±q1, 0) and (0,±q2), having nearly equal magnitudes (four-lobe
pattern). This corresponds to the transition at a = a2 as discussed and seen on Ag(110), where the interface
structures itself into rectangular pyramids sitting side-by-side [30] — cf. also Fig. 20(c)]. (c) The altered

form of the R
(rec)
1 state, with roof-top edges replaced by arrays of nearly square shaped four-sided pyramids

— cf. also Figs. 20(d) and (e). This complex structure has qualitatively the same FT as R
(rec)
1 , with just

two peaks at (±q1, 0) — cf. also, Figs. 20(d), (e), and (f). (This figure is reproduced from Ref. [27].)

R
(rec)
2 state [Fig. 20(b)], and the ripple rotation transition proceeds between these two

states.

Let us now compare our theoretical results with the experimental STM data of

Ref. [31] for ion beam erosion of Ag(110), and the diffraction data of Ref. [30] for
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epitaxial growth on Ag(110). In both cases, the system control parameter used was

the substrate temperature. These experimental data are related to the wealth of the-

oretically predicted interfacial phenomena shown in Figs. 20 and 21, produced by VA

on (110) crystal surfaces in the ripple rotation transition involving the rectangular rip-

pled states R
(rec)
1 and R

(rec)
2 . Across this transition, as the temperature-like parameter

a varies there are various interesting transitions occurring at six characteristic points

ordered as a+ < a3 < a2 < a1 < a0 < a−.

(i) In the range a < a+, the ordinary rippled state R2 occurs.

(ii) In the range a+ < a < a3, the R
(rec)
2 state occurs — cf. Fig. 20(a).

(iii) In the range a3 < a < a2, the AltR
(rec)
2 state occurs, with depressed pit sizes

and roof-top edges decorated by arrays of small rounded mounds. Nevertheless, all

standard diffraction data of this state are the same as those for the R
(rec)
2 state — cf.

Figs. 20(b) and 20(a). The elongated pyramids of the AltR
(rec)
2 state have worm-like

shapes. Such a worm-like ripple morphology is seen in the STM image in Fig. 4(b)

of Ref. [2], which parallels Fig. 20(b) and can be viewed as obtained by cutting an

infinitely long worm into segments. The “cutting” is provided by the small pits placed

between the long segments as shown in Fig. 20(b), in accord with the STM image in

Fig. 4(b) of Ref. [2]. In addition, in the same STM image one can see modulation of the

widths of worm-like pyramids (pearl-like substructures), corresponding to the arrays

of small rounded mounds in Fig. 20(b).

(iv) At a ≈ a2, the interface structures appear as rectangular mounds sitting side-by-

side, and the in-phase diffraction pattern exhibits two equally strong pairs of peaks

at (±q1, 0) and (0,±q2), as shown in Figs. 20(c) and 21(b). This corresponds to the

four-lobe nearly in-phase diffraction pattern observed in Ref. [30], at the ripple rota-

tion transition on Ag(110). We recall there is no such FT interface pattern present

with zero VA — cf. Fig. 13(b, middle panel), where the four-lobe FT pattern has peak

positions different from those seen in both the experiments [30] and simulations in

Figs. 20(c) and 21(b) with nonzero VA. Thus our theoretical results with nonzero VA,

in combination with experiments [30], provide clear evidence that VA plays a signif-

icant qualitative role in epitaxial growth and erosion on crystal surfaces. This alone

demonstrates that nonzero VA induces the formation of unique interface morpholo-

gies, different from those that occur for zero VA — cf. Figs. 20(c) and 13(b).

(v) The range a2 < a < a1, characterized by a steep increase of the interface roughness

in Fig. 18(b), is an extended ripple rotation transition region. The interface SD (out-

of-phase diffraction pattern) in this region is more like that of the R
(rec)
2 state, whereas

the interface FT (the in-phase diffraction pattern) is more like that of the R
(rec)
1 state.

(vi) At a ≈ a1, the interface SD (i.e. out-of-phase diffraction pattern) has two equally

strong peaks at (±M1, 0) and (0,±M2), as shown in Fig. 20(d).

(vii) For the range a1 < a < a0, the AltR
(rec)
1 state occurs, which importantly exhibits

enhanced roughening as shown in Fig. 18(b). Morphologically, the AltR
(rec)
1 state can

be characterized as the R
(rec)
1 state with roof-top edges replaced by arrays of small
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nearly square shaped pyramids packed between long pits, as shown in Fig. 20(e). Con-

sequently, all diffraction data of the intensely rough AltR
(rec)
1 state are almost the same

as those of theR
(rec)
1 state occurring for a > a0 — cf. Fig. 20(f). Such an intensely rough

state has been seen in the ripple rotation transition of Ag(110) in epitaxial erosion ex-

periments [31], and in the STM image in Fig. 4(c) of Ref. [31] there are side-by-side

nearly square shaped pyramids characteristic of the AltR
(rec)
1 state — cf. Fig. 20(e).

(viii) For a0 < a < a−, just next to the STM image of Ref. [31] there are rectangu-

lar pyramids of the R
(rec)
1 state, with Fig. 20(f) corresponding to the STM image in

Fig. 4(d) of Ref. [31]. This state is a checkerboard arrangement of rectangular elon-

gated pyramids and pits (inverted roof-tops).

(ix) Finally, in the range a > a− the simple rippled state R1 occurs (not shown in Fig. 20

but see Fig. 9), corresponding to the STM image in Fig. 4(e) of Ref. [31] that illustrates

the presence of rippled state dislocations theoretically predicted in Refs. [26, 28] —

cf. § 4.1 and § 4.3 here. In addition to the agreement between theory and the experi-

mental surface morphology data on Ag(110) in Ref. [30,31], there is quite remarkable

agreement with the experimental surface roughness and feature size data measured

across the ripple rotation transition [31], which are highly asymmetric across the tran-

sition in accord with the simulation results shown in Fig. 18(b). Our theory explains

this asymmetry, in terms of the difference between the roughening character of the

worm-like Altered R
(rec)
2 state with surface roughness ∼ t0.25 in Fig. 20(b) and the sig-

nificantly rougher square pyramid-like AlteredR
(rec)
1 state with roughness ∼ t0.4 shown

in Fig. 20(e) from simulations [28].

A comparison of Fig. 13(b) and Fig. 20 also well illustrates significant effects in-

duced by the VA. The morphology of the standard Rectangular Rippled states in the

proximity of the ripple rotation transition is qualitatively different. Two new types of

interfacial states emerge, the Altered R
(rec)
1 state and the Altered R

(rec)
2 state, purely

due to the VA. Importantly, the very rippled rotation occurs as a transition between the

two Altered Rectangular Rippled states, and due to VA the transition occurs over an

extended parameter range interposed between the Altered state ranges. As VA → 0,

the ranges of the Altered R
(rec)
1 and Altered R

(rec)
2 states — and the ripple rotation tran-

sition range — all shrink to a single critical point, the acr in Eq. (4.8). For zero VA, we

recall that acr was identified as the single critical point at which the R1 and R2 facets

coexist across static edges — cf. Eq. (4.8). However, the VA affects the concave uphill

edges and concave downhill edges differently, so they become static at the two distinct

values of the system control parameter aconvex and aconcave, which merge into acr in the

zero VA limit. This seminal VA effect gives rise to the complex kinetic phase diagram

involving the Altered R
(rec)
1 state, the Altered R

(rec)
2 state and the extended ripple rota-

tion transition range. The role of VA is indeed profound: in the zero VA limit, the rich

interfacial behaviors emerging due to VA in Figs. 20(b),(c),(d), and (e) all shrink to the

single critical point given by Eq. (4.8), corresponding to the interface morphology seen

in Fig. 13(b, middle panel).
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Our focus in the above discussion is on the type B ripple rotation transition that

involves the multi-stable region in the epitaxial growth and erosion experiments on

Ag(110) [30, 31], where R1 facets (±M1, 0) and R2 facets (0,±M2) are both stable.

An alternative scenario for this transition, anticipated in Ref. [25] and then observed

on Rh(110) and Cu(110) surfaces [33, 35], is the type A behavior that involves the

intermediate Rhomboidal Pyramid (RhP ) state discussed in § 4.1. The RhP structures

are 2D arrays of four-sided pyramids and pyramidal pits with rhomboidal contour lines.

The RhP state pyramids consist of facets with a quartet of four equivalent (symmetry

related) slope vectors (±M1,±M2) — cf. Fig. 8. In accord with experiments [33,

35], the RhP state exhibits an enhanced roughening with < h2 >1/2∼ t0.4 for zero

VA [26] — cf. § 4.1. In addition, the SD and FT data for the RhP state obtained

for zero VA [26] are qualitatively the same as the data obtained in the experiments

on Rh(110) and Cu(110) [33, 35], so the VA does not substantially alter the RhP
state. Further, the RhP four-sided pyramids arise from the quartet of four equivalent

facets. By symmetry, such facets can coexist across static edges whatever the values of

the system control parameter or the VA may be. Varying the VA value only produces

quantitative differences between the widths of the convex and concave edges on the

four-sided pyramids and pits, as seen on (001) surfaces — cf. [29] and § 5 . In contrast

to the RhP pyramids, the Rectangular Rippled states have pyramids consisting of the

two types of facetsR1 at (±M1, 0) andR2 at (0,±M2), which are oriented along the two

non-equivalent principal axes of (110) — cf. the SDs in our figures. Such non-equivalent

facets are not related to each other, and can therefore coexist across static edges only

at special values of the system control parameter affected by the VA. This significantly

influences the structural dynamics and kinetic phase transitions of the interface for

the type B systems, with the ripple rotation transition going through the multi-stable

system parameter region where the R1 and R2 facets are both stable.

4.3. Large scale topological defects mediating surface growth

Unlike the high symmetry (001) and (111) surfaces on which growing pyramidal

structures form, the dominant structures on low symmetry rectangular (110) surfaces

are the so-called rippled states [30–35]. They are one-dimensionally periodic surface

structures, seen on (110) crystal surfaces of various materials such as Ag, Cu, and

Rh [30,31,33,35]. The rippled state wave-vector points along one of the two principal

(high symmetry) directions of the (110) surface, and the rippled state surface profile is

simply a zigzag line — i.e. the surface consists of long facets with slope vectors that al-

ternate from parallel to anti-parallel to one of the two principal directions of the (110)

crystal surface (cf. Fig. 22).

The two principal directions of (110) are not equivalent (symmetry related). Thus

depending on the choice of the preferred direction, there are two major kinds of rip-

pled states, R1 and R2 [25,26]. By changing the substrate temperature, the deposition
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Figure 22: 3D plot of the (110) surface in the rippled state R2 from simulations. Note the facets that
have a finite extent along the x1 direction, where they are terminated by dislocation-like topological defects.
Two knife-like dislocations are seen on the left and the right side of surface section. whereas in the middle
a fork-like dislocation is present. The presence of the dislocations breaks the perfect periodic order of the
rippled state R2 along the x2 direction.

(or erosion) flux intensity and the molecular beam energy, de Mongeot and coworkers

were able to drive the so-called ripple rotation (by 90◦) transition between the two

kinds of rippled states [30, 31, 33, 35]. These experiments and theory [25–27] both

suggest this transition is complex, involving the formation of interesting intermediate

states between the two rippled states. One is the Rhomboidal Pyramid (RhP ) state,

theoretically predicted in Ref. [25] and subsequently observed in epitaxial erosion ex-

periments on Rh(110) and Cu(110) surfaces [33]. Alternatively, the ripple rotation

transition may proceed through a multi-stable parameter range, where both types of

rippled state facets (R1 and R2) are locally stable [25–27]. This multi-stable range is

realized in experiments on Ag(110) surfaces, in both epitaxial growth [30] and erosion

studies [31]. As theoretically revealed in Refs. [25, 27], due to multi-stability the sim-

ple Rippled states R1 and R2 are replaced by more complex Rectangular Rippled states

R
(rec)
1 andR

(rec)
2 , which are (disordered) checker-board structures of alternating rectan-

gular pyramids and pits. For example, unlike the simpleR1 state, a rectangular pyramid

of the R
(rec)
1 state incorporates not only the long R1 facets but also significantly smaller

metastable R2 facets [25–27]. Rippled Rectangular pyramid structures are clearly seen

in the STM images from erosion experiments on Ag(110) — cf. Fig. 4(d) of Ref. [31].

In reality, the structures of the simple Rippled and Rectangular Rippled states do

not have a long range positional (periodic) order, as seen in the simulations shown in

Figs. 12 and 22. Experimentally, the lack of long range positional order corresponds

to a finite width of the correlation peaks in the nearly in-phase surface diffraction data
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of the rippled states [30]. The perfect periodic order is destroyed by dislocation-like

topological defects that break the coherence of these structures — cf. Refs. [25,26] and

Figs. 12 and 22 here. Due to dislocations, ripples only have a finite coherence length ξ,
corresponding to the typical separation between the dislocations along a ripple [3,16].

Importantly, the simulations show that the Rippled state period λ and the ripple ampli-

tude w (∼ surface roughness) grow via a coarsening process involving the motion and

annihilations of these dislocations [25, 26]. Unlike the dislocations in standard near-

equilibrium systems [43], the dislocations of the growing rippled states are genuinely

traveling objects (never at rest). Over their lifetimes (i.e. before they annihilate with

each other), these dislocations constantly move under the tension of the facet edges

terminating at the dislocation core [26] — cf. § 4.1.

We have elucidated the structure and dynamics of these far-from-equilibrium topo-

logical defects [28]. The derived fundamental dislocation dynamics laws that relate

the dislocation velocity to the Rippled state period (i.e. the wavelength λ) provide the

analytical deduction of experimentally interesting surface coarsening laws that govern

its temporal evolution, the ripple amplitude (∼ surface roughness) w and the ripple

coherence length ξ. For the simple Rippled states, we thus obtain the coarsening laws

λ ∼ w ∼ t2/7 and ξ ∼ t4/7 in excellent agreement with the simulations [25, 26]. How-

ever, in some circumstances we find that these states may exhibit a faster coarsening

(i.e. roughening) with λ ∼ w ∼ t1/3 and ξ ∼ t1/2, as also observed in simulations [26].

In Ref. [28], we have also discussed the dislocations in the Rectangular Rippled interfa-

cial states for which the coarsening laws λ ∼ w ∼ t1/4 and ξ ∼ t1/2 previously inferred

from the simulations [25, 26] are found. The surface coarsening laws at the transi-

tion from the Rippled to the Rhomboidal Pyramid state are discussed, and also the

crossover effects that occur in the proximity of this transition on (110) crystal surfaces.

Our analytic theory of dislocation dynamics is based on the general phenomenological

approach to surface dynamics in multilayer epitaxial growth outlined in § 2. Let us now

review our results on dislocation dynamics, and implications for interface coarsening.

The structure of a single dislocation close to its core is shown in Fig. 23, for the

R2 rippled state with half period λ. The dislocations of a rippled state travel along the

ripples — i.e. their drift velocities are parallel to the direction of the edges as shown in

Fig. 12. A surface section around a dislocation is shown in Fig. 23(a); and Fig. 23(b)

depicts the dislocation in terms of the edges between facet-like surface sections seen

in Fig. 23(a). The dislocation in Fig. 23(b) moves to the right, as observed in sim-

ulations [3, 16], and this motion is essential for the overall surface dynamics as the

primary mechanism of the rippled state surface coarsening. Thus as the dislocation in

Fig. 23 moves to the right, the two facets of width λ (above and below the middle facet)

merge to form the larger facet of width 2λ. These two facets, labeled in Fig. 23 as the

“upper” (U) and “lower” (L) facets relative to the “middle” (M) facet in Fig. 23, play

an essential role in the dislocation dynamics — in particular, in deriving the kinetic law

for vd(λ) relating the dislocation velocity vd to the phase half-period λ, essential for
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Figure 23: (a) 3D view of a surface section containing a dislocation in the simple Rippled state R2, from
simulations [26]. (b) The dislocation depicted in terms of the edges between facet-like surface sections in
Fig. (a). The dislocation consists of three R2 facets — viz. a flat middle facet (M) having a knife-like
shape, and upper (U) and lower (L) facets that are both slightly curved (mostly along the x1-direction).

obtaining the surface coarsening laws. As discussed below, the dislocation core even-

tually becomes sharp, with λ (core length scale along x2) much smaller than the core

lateral size ξc (core length scale along x1) as seen in Fig. 23(b). In this figure, JNE = 0
on the middle (M) flat facet, whereas the upper and lower facets both move due to

a nonzero downhill current, which displaces the material from the upper facet where

J
NE flows to the left to the lower facet where J

NE flows to the right. This removal of

material from the upper facet and its subsequent absorption on the lower facet is the

mechanism that causes the dislocation in Fig. 23(b) to move to the right.

Our analytic theory of the dislocation dynamics [28] is based on these ideas. One

of the central results of this theory is the scaling law

vd ∼ ξc
λ3

, (4.17)

which relates the dislocation velocity vd to the phase half-period λ and the dislocation
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core lateral size ξc — cf. Fig. 23(b). To establish the dislocation dynamics law express-

ing vd as a function λ, one also needs to relate ξc in (4.17) to λ. For example, for the

dislocations of the R2 rippled state [28] we have

ξc ∼ λ3/2 , (4.18a)

such that

vd(λ) ∼
(a− − a)1/2

λ3/2
∼ 1

λ3/2
(4.18b)

for λ≫ λcross. Here

λcross ∼
1

(a− − a)2
(4.19)

is the characteristic length scale, which depends on the distance a− − a away from the

R2-to-RhP state transition at the line a− = a in the phase diagram — cf. Figs. 8 and

9. At the transition, λcross in Eq (4.19) diverges, so another scaling regime becomes

prominent at or near the transition. This regime is characterized by

ξc ∼ λ5/4 , (4.20a)

hence from (4.17) we have

vd(λ) ∼
1

λ7/4
(4.20b)

for λ ≪ λcross. For λ > λcross, the ultimate scaling behavior seen near the transition

critical point is given by Eq. (4.18). As this transition point is approached λcross di-

verges, leaving the purely critical scaling behavior in Eq. (4.20). Below we discuss the

effects of this significant crossover on the overall surface coarsening dynamics of the

rippled state.

From the simulations [25,26] (cf. § 4.1 here), the coarsening growth of the rippled

state period λ is mediated by traveling dislocations with velocity vd(λ), This is similar

to that discussed in Ref. [18] denoted by MG, for pyramidal states on (001) surfaces —

cf. § 3.2. Indeed, the (001) surfaces coarsen from the gliding motion and annihilation

of two nearly independent dislocations ensembles, moving along the two mutually

perpendicular principal axes of the (001) — cf. § 3.2 and Fig. 5. Thus the dislocations

of one ensemble move in the direction of one principal axis, while the dislocations

of the other ensemble move in the direction of the other principal axis. In the MG

study of (001) surfaces, the dislocations from different ensembles occasionally collide

and form bound pairs. However, these dislocation-bound states are short-lived and

eventually decay — cf. Fig. 5. The two dislocation ensembles are nearly decoupled from

each other, and they independently and simultaneously contribute to the (001) surface

coarsening. Geometrically, each of the two dislocation ensembles on (001) surfaces

shown is equivalent to the Rippled state dislocation ensemble on (110) surfaces in

Fig. 12. Consequently, two basic relations of geometric origin for the growth kinetics of
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the surface state period λ can be adopted from the MG here — cf. also § 3.2 and Fig. 6.

These are (i) the relation in Eq. (3.13)

1

λ

dλ

dt
=

2vd(λ)

ξ(λ)
, (4.21)

with ξ the separation between dislocations along a ripple (cf. [18,26], § 3.2, § 4.1 and

also Fig. 12); and (ii) the relation

ξ ∼ λq−1 , (4.22)

with q the number of channels for dislocation annihilations — i.e. the number of dis-

tinct ways for an annihilation to proceed by continuously changing the edge network

(cf. [18], and Eq. (3.20) and Fig. 6 here). As discussed in Ref. [18], the dislocations of

four-sided pyramidal states on (001) surfaces have q = 3 channels for their annihila-

tions — cf. § 3.2 and Fig. 6. Similarly, any dislocation D on (110) surfaces in Fig. 12

may annihilate (with an anti-dislocation) the core that is on the same facet as the core

of D — cf. the dislocation pairs terminating closed loops of facet edges in Fig. 12, in

the annihilation channel 1. In addition, a dislocation may also annihilate with anti-

dislocations that have cores on any one of the two nearest neighboring facets — e.g.

the dislocation pair close to the right in Fig. 12(b), in the annihilation channels 2 and

3 similar to those in Fig. 6. Thus as before there are q = 3 channels for dislocation an-

nihilations, allowed by the continuously changing edge networks of the rippled states

on (110) surfaces.

There is a major qualitative difference between the MG dislocations of the four-

sided pyramidal states on (001) surfaces and those of the rippled states discussed above

— viz. the relevant velocity law vd(λ). This difference affects the detailed form of the

coarsening law giving the growth of λ(t) with time t, which from Eqs. (4.21) and (4.22)

can be extracted from

t =

λ(t)
∫

0

dλ

λ

ξ(λ)

vd(λ)
∼

λ(t)
∫

0

dλ

λ

λq−1

vd(λ)
. (4.23)

Thus the combination of Eq. (4.23) with the respective dislocation velocity law for

vd(λ) produces the related coarsening law governing the dynamics of the rippled states

on (110) surfaces. For the power velocity law of the form

vd(λ) ∼
1

λnv
, (4.24)

Eq. (4.23) implies the coarsening law

λ(t) ∼ tnλ and ξ(t) ∼ tnξ , (4.25)

with

nλ =
1

q − 1 + nv
(4.26)
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and

nξ = (q − 1)nλ =
q − 1

q − 1 + nv
. (4.27)

However, in the presence of the crossover behavior described in Eqs. (4.18)–(4.20),

vd(λ) is not a simple power law as in Eq. (4.24). Nevertheless, since vd(λ) has power

law asymptotic forms on both sides of the crossover, the crossover behavior of vd(λ)
versus λ directly implies the corresponding crossover behavior of λ(t) (and of ξ(t) ∼
[λ(t)]q−1) versus time t. This crossover occurs at a characteristic time scale tcross, at

which λ(tcross) = λcross with λcross as in Eq. (4.19). There are thus two scaling behav-

iors, one for t ≪ tcross corresponding to λ(t) ≪ λcross and the other for t ≫ tcross when

λ(t) ≫ λcross. The crossover time scale tcross can be obtained by combining Eq. (4.23)

with Eqs. (4.19) and (4.20b), yielding the time scale

tcross ∼
1

(a− − a)2q+3/2
=

1

(a− − a)15/2
(4.28)

that diverges at the ripple-to-RhP state transition point because a−−a vanishes at this

transition. For t ≪ tcross, one has λ ≪ λcross and vd(λ) as in Eq. (4.20b), correspond-

ing to Eq. (4.24) with the velocity exponent nv = 7/4. With this value of nv, from

Eqs. (4.26) and (4.27) with q = 3 we find that w(t) ∼ λ(t) ∼ tnλ and ξ ∼ tnξ , where

nλ =
4

15
∼= 0.2666 and nξ =

8

15
. (4.29)

At the ripple-to-RhP transition (a− − a = 0), the crossover time given by Eq. (4.28)

is infinite, and coarsening with the exponents in Eq. (4.29) persists for arbitrarily long

times. Near the transition (a− − a > 0) in the rippled phase, tcross is finite; and for

t≫ tcross one has λ(t) ≫ λcross with vd(λ) as in Eq. (4.18b), corresponding to Eq. (4.24)

with the velocity exponent nv = 3/2. With this value of nv, from Eqs. (4.26) and (4.27)

with q = 3 we find w ∼ λ ∼ tnλ and ξ ∼ tnξ , where

nλ =
2

7
∼= 0.2857 and nξ =

4

7
. (4.30)

Indeed, from Eqs. (4.18b) and (4.23), for t≫ tcross we find

w(t) ∼ λ(t) ∼ (a− − a)1/7 t2/7 , (4.31)

indicating that the amplitude of this coarsening law vanishes at the R2-to-RhP tran-

sition. At the transition point, the coarsening given by Eq. (4.31) is pushed away to

infinite time, and replaced by the slower coarsening law w(t) ∼ λ(t) ∼ t4/15 from

Eq. (4.29). Away from the transition point, this critical coarsening behavior persists up

to time tcross, when it crosses over to the coarsening law in Eq. (4.31) with the bigger

coarsening exponent nλ = 2/7 ∼= 0.2857. This exponent is in an excellent agreement

with the value obtained from the rippled state simulations [25, 26], away from the

transition point. The simulations also indicate that the amplitude of the coarsening
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law decreases as the R2-to-RhP transition is approached (a− − a → 0) as shown in

Fig. 11(a), in accord with Eq. (4.31).

To summarize, the analytic results explain the coarsening of the Rippled state with

λ ∼ t2/7 and ξ ∼ t4/7 (4.32)

seen in the simulations [25, 26], but in some circumstances there is a different coars-

ening where

λ ∼ t1/3 and ξ ∼ t1/2 (4.33)

in the Rippled state simulations [26], as noted in § 4.1. In the phase diagram, such a

coarsening occurs for u21 6= u12 in a sub-domain of the Rippled state range, just below

the intensely rough sub-domain of the RhP state in Figs. 8 and 9 (close to the transition

line to the R(buc) state). The morphology of the dislocations in this sub-domain from

the simulations is shown in Fig. 12(b). For these knife dislocations there are typically

long cores, with core size ξc comparable to the separation between dislocations given

by

ξ ∼ ξc . (4.34)

Consequently, on invoking Eq. (4.18a) we find

ξ ∼ λ3/2 . (4.35)

In the regime exhibiting these maximally elongated dislocation cores (with ξc ∼ ξ),

Eq. (4.35) actually replaces Eq. (4.22). Note however that Eq. (4.35) has the form

of Eq. (4.22), on formally setting q = 5/2. With this value of q and nv = 3/2 [cf.

Eq. (4.18a)], Eq. (4.26) and Eq. (4.27) yield

nλ =
1

3
, and nξ =

1

2
. (4.36)

These results explain the scaling behavior in Eq. (4.33), suggested by the simulations

in the sub-domain of the Rippled state range.

Next, let us consider the coarsening behavior of Rectangular Rippled states seen in

Fig. 13. For these states, simulations [25,26] suggest that

λ ∼ t1/4, and ξ ∼ t1/2 . (4.37)

The scaling behavior in Eq. (4.37) can be also understood within the present analytic

framework. Note that the dislocations of the Rectangular Rippled Stated are struc-

turally different from the dislocations of ordinary rippled states, so the scaling behavior

in Eq. (4.37) is different from that for simple rippled states in Eqs. (4.32) and (4.33).

Indeed, consider a typical dislocation of the Rectangular Rippled state, as depicted in

Fig. 24 for the case of the R
(rec)
2 state. The core of this dislocation is an R1 facet with a
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Figure 24: (a) 3D view of a surface section around a dislocation in a Rectangular Rippled state R
(rec)
2 .

(b) The dislocation depicted in terms of the edges between facet-like surface sections seen in Fig. (a),
incorporating a smaller rhomboidally shaped R1 facet at its core in addition to the long R2 facets. (This
figure is reproduced from Ref. [28].)

rhombic shape — cf. Fig. 24(b). The rhomboidal angle ψ in Fig. 24 is fixed by model

parameters — i.e. it does not depend on the dislocation size. Due to this geometric

constraint, the lateral core size

ξc ∼ λ . (4.38)

From Eqs. (4.38) and (4.17), the velocity law for the dislocations in the Rectangular

Rippled states has the form

vd ∼ 1

λ2
, (4.39)

which corresponds to Eq. (4.24) with velocity exponent nv = 2. Thus from Eqs. (4.26)

and (4.27), and again with q = 3 channels, we find

nλ =
1

4
, nξ =

1

2
. (4.40)

These results analytically explain the scaling behavior of the Rectangular Rippled states

in Eq. (4.37), inferred earlier from the simulations [25,26].
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It is significant to note that coarsening of the four-sided pyramid states on (001) sur-

faces (cf. § 3.2 here and Eq. (3.25) in particular), and also the RhP state on (110)

surfaces, is also governed by the scaling law (4.37). This corresponds to Eq. (4.38)

being satisfied for the dislocations in these states — i.e. the lateral dislocation core size

ξc is proportional to λ.

Consequently, from (4.17) the velocity law takes the same form vd ∼ 1/λ2 as in

Eq. (4.39), so the coarsening exponents in Eq. (4.40) also apply to the four-sided pyra-

mid states on (001) surfaces [cf. Eq. (3.21) in § 3.2] and to the RhP state on (110)

surfaces. However, higher values of the coarsening exponents (”enhanced coarsening”)

are seen in the simulations [26], in the RhP range close to the R(buc) state [cf. § 3.1

and Fig. 11]. Indeed, this intensely rough RhP domain is adjacent to the intensely

rough rippled state, with the coarsening as in Eq. (4.33).

We end this section with a few further remarks. The discussion presented here has

addressed the rippled and other states on (110) surfaces, in the slope selection dom-

inated regime reached at long times. In this regime, the spatial period λ ∼ tnλ and

the interface roughness (width) w ∼ tβ must scale with the same coarsening exponent

nλ = β as slope ∼ w/λ = const., due to the slope selection. In contrast to this long

time regime where nλ = β, in ion erosion studies on Cu (110) [33, 35] it appears that

the selected facets of the Rippled state have not yet fully reached the preferred slope

magnitude — their slope ∼ w/λ still grows within the experimentally accessible time

scale. Such early time regimes are theoretically known to exhibit the coarsening expo-

nent n smaller than β with typically small values [22], as was indeed observed in these

experiments on Cu (110) crystal surfaces. We also note that the above analytic discus-

sions of the rippled state ignore the vertical asymmetry (VA) discussed in § 4.2, which

produces a contribution to the surface curvature current that is even under vertical re-

flection h → −h. The VA effects were examined in detail in recent simulations [27]

reviewed in § 4.2, which show that the VA does not alter the coarsening laws of simple

Rippled, Rhomboidal Pyramid and Rectangular Rippled states. Thus the VA is irrel-

evant for these states — i.e. at long times, the coarsening of these states obeys the

zero VA coarsening laws discussed. Nonetheless, in Ref. [27] the VA was shown to be

capable to induce novel surface states which are altered versions of the Rectangular

Rippled states — cf. § 4.2. One of them, the so-called Altered R
(rec)
1 state, was found

from simulations [27]) to exhibit an enhanced coarsening with λ ∼ w ∼ t0.4. This is

significantly different from that for ordinary Rectangular Rippled states in Eq. (4.40),

but unsurprising given the significant structural differences between the R
(rec)
1 and the

Altered R
(rec)
1 states [27]. Detailed analytic understanding of the structure and coars-

ening laws of the VA induced Altered R
(rec)
1 state remains an issue for future theoretical

work. Another experimentally significant theoretical challenge is to analytically deduce

the enhanced coarsening where λ ∼ w ∼ t0.4, seen in the simulations of the Buckled

Rippled and intensely rough RhP state even for zero VA — cf. § 4.1.
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5. Far-From-Equilibrium Transitions in the Epitaxial Growth and Erosion
on (001) Surfaces

On square symmetry surfaces (001) surfaces, the ESV instability [4] frequently in-

duces the formation of nearly periodic (defected) checkerboard arrangements of alter-

nating four-sided pyramids and pits (inverted pyramids), with sizes growing in time as

t1/4 as exemplified by Cu(001) epitaxial growth [44]. As discussed in § 3.2, this coars-

ening law may be understood from the dynamics of topological defects (dislocations)

of the regular checkerboard structure [18,19]. However, other structures have recently

been suggested by experiments on (001) surfaces [36–40]. Further, a far-from equi-

librium phase transition between two kinds of four-sided pyramidal states has recently

been observed in the epitaxial growth on Ag(001) by de Mongeot et al. [36]. This tran-

sition occurs as a 45◦ rotation of pyramid facets at a low critical temperature (≈ 100
degrees K), and may be attributed to deactivation of corner crossing processes [46]. At

significantly higher critical temperature, a similar transition has been seen in erosion

on Cu(001), but this has been disputed [37]. Until our study [29], a deep quali-

tative understanding of these interesting experimental results was missing and some

long-standing basic questions remained unresolved, even for the epitaxial growth and

erosion on common (001) surfaces. Thus how does vertical (pyramid-pit) asymmetry

affect interface structure and its coarsening dynamics? And what are the possible in-

terfacial morphologies and structures involved in the 45◦ facet rotation transitions on

(001) surfaces?

5.1. The multitude of interface states on (001) surfaces

The above recent and long-standing questions have been addressed [29]. The epi-

taxial growth and erosion on (001) crystal surfaces were elucidated by considering the

general phenomenological approach outlined in § 2, expressing the dynamics of the in-

terface profile h(x1, x2, t) through the conservation law Eq. (2.1) of the surface current

J = (J1, J2) — i.e.

∂h

∂t
= −∇·J where J = J

(NE)(M) + J
(curv) , (5.1)

on again omitting the white noise term η(x, t). As in § 2, the surface non-equilibrium

current J(NE) is a function of the local interface slope vector M = (M1,M2) = ∇h,

whereas the J
(curv) includes the “curvature currents” that vanish on flat interfaces

(facets) — viz. the surface diffusion-like current ∼ ∇(∇)2h and the vertical asym-

metry Villain current ∼ ∇(∇h)2 breakiing the vertical reflection symmetry h → −h.

The square symmetry of the (001) surface imposes some ubiquitous properties on

J
(NE)(M) = (J

(NE)
1 (M), J

(NE)
2 (M)), which again must transform in the same way

as the slope vector M under symmetry transformations of the (001) surface. Thus
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under the basic square reflections we have

(M1,M2) → (−M1,M2),

(J
(NE)
1 , J

(NE)
2 ) → (−J (NE)

1 , J
(NE)
2 )

and

(M1,M2) → (M1,−M2) ,

(J
(NE)
1 , J

(NE)
2 ) → (J

(NE)
1 ,−J (NE)

2 ) .

In addition, the square diagonal reflection symmetry (M1,M2) → (M2,M1) implies

(J
(NE)
1 , J

(NE)
2 ) → (J

(NE)
2 , J

(NE)
1 ), which is the condition JNE

1 (M1,M2) = JNE
2 (M2,M1)

met in § 2. As before, these symmetry restrictions on the form of J(NE) can be used

to classify the solutions where J
(NE)(M) = 0 — i.e. the zeros related to the preferred

slopes M of the facets that develop across the growing interface and self-organize into

pyramidal structures. From the square symmetry of (001), there are three possible

kinds of preferred slope vectors M = (|M| cos(θ), |M| sin(θ)) as follows.

(i) Singlet at |M| = 0.

(ii) Quartet of equivalent (symmetry related) slope vectors. There are two nonequiva-

lent types of quartets: a type I quartet, along square diagonals θ = 45◦ + 90◦(n − 1),
n = 1, 2, 3, 4; and a type II quartet, along square sides θ = 90◦(n − 1), n = 1, 2, 3, 4,

already encountered in § 2. Importantly for an understanding of the 45◦ rotation tran-

sition on (001) surfaces, the type I and type II quartets are not equivalent because the

45◦ rotation is not a symmetry of the (001) surface.

(iii) Octet of equivalent slope vectors pointing along eight polar angles θ=90◦(n−1)±φ,

where φ is an angle in the range −45◦ < φ < +45◦ and n = 1, 2, 3, 4. Although naturally

permitted by the square symmetry of the (001) surface, the possible existence of an

octet zero and its physical relevance had not been anticipated prior to our study [29].

Due to the ESV instability, the singlet at M = 0 is unstable, and preferred facets

may therefore correspond to quartets or to an octet. Thus the stable type I quartet may

give rise to the checkerboard Phase I (PI) of four-sided pyramid structure in Fig. 25.

Likewise, the stable type II quartet may give rise to the checkerboard Phase II (PII)

of four-sided pyramid structure in Fig. 25. The states PI and PII both enter Fig. 25,

which depicts the unified far-from-equilibrium phase diagram for the epitaxial growth

and erosion phenomena on (001) surfaces [29]. Type I and type II pyramid facets

are geometrically related by the 45◦ rotation, and the phase diagram incorporates the

experimentally observed 45◦ facet rotation transition on Ag(001) [36]. Moreover, we

find that the octet zeros give rise to a novel interface state, shown in Fig. 25(a) from

simulations. This state intervenes between PI and PII states and is characterized by

the interface slope distribution (SD) function in Fig. 25(a), with eight peaks forming

an octagon in the M-plane at the eight polar vectors θ = 90◦(n− 1)± φ (n = 1, 2, 3, 4),

so we call it the octagonal pyramid (OctP ) state. From simulations, we find this state
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Figure 25: Kinetic phase diagram of the interface model with J
(NE)(M) in Eq. (5.2), depicting the (b,W =

wu2/r) plane for fixed c and d. The point I is at b = 1, W = 0. (a) The case (d − 1)(c − d − 1) < 0,
with OctP state realized. (b) The case (d − 1)(c − d − 1) > 0 with MultiP state realized, showung
interface height contour plots, height FTs (yielding in-phase diffraction patterns) and SD functions (yielding
out-of-phase diffraction patterns) from simulations [29]. The OctP angle φ in (a) changes from 0 at the
transition to P II to 45◦ at the transition to P I (VA= 0).

corresponds to a structure with pyramids having up to eight facets — cf. Fig. 26(a).

The interface slope distribution (SD) of the OctP , with eight peaks positioned as in

Fig. 25(a), is the same as the SD of the intermediate state seen in the 45◦ rotation

transition on Cu(001) — cf. the eight lobe out-of-phase diffraction patterns observed

by Broekmann et al. [37]. It has been suggested that the 45◦ rotation transition on

Cu(001) (erosion) may be due to post-deposition annealing [37]. However, in the

study of Ag(001) growth by de Mongeot et al. [36] such post-growth annealing effects

were carefully eliminated at low temperatures (< 100 degrees K) where the 45◦ facet

rotation transition was found, so it can be considered a far-from-equilibrium growth

transition.

The epitaxial growth and erosion phenomenology on common (001) surfaces can
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be explained by considering the interface equation of motion Eq. (5.1) with a generic

form of the non-equilibrium current J
(NE)(M) permitted by the symmetries of the

(001) surface. As discussed in § 2, J
(NE)(M) can be expressed as an expansion in

powers of M respecting the symmetry restrictions such that

J
(NE)
1 =M1

[

r − u(M2
1 + bM2

2 )− w(M4
1 + cM2

1M
2
2 + dM4

2 ) + · · ·
]

,

J
(NE)
2 =M2

[

r − u(M2
2 + bM2

1 )− w(M4
2 + cM2

2M
2
1 + dM4

1 ) + · · ·
]

. (5.2)

Equation (5.2) is the natural generalization of Eq. (2.7), obtained by incorporating the

(symmetry permitted) fifth order terms — i.e. the w-terms in Eq. (5.2) introduced in

Ref. [29]. These w-terms are essential for a qualitative understanding of the 45◦ ro-

tation transition on realistic (001) surfaces. Indeed, for w = 0 we recover the (001)

surfaces model Eq. (2.7), where the 45◦ rotation transition between the Phase I and

Phase II occurs at the single point I at (b = 1,W = 0) in Fig. 25, with the phase diagram

in terms of the two parameters (b,W = wu2/r) — and we recall that for a system at

the (b = 1,W = 0) point, J(NE)(M) vanishes on the circle |M |2 = r/u in the M -space,

which is unphysical and in general excluded on real (001) surfaces. The w-terms in

Eq. (5.2) are essential to break this artificial symmetry — i.e. they must be included

to realistically discuss the 45◦ rotation transition, and produce the novel ubiquitous

intermediate states OctP and MultiP as discussed below (cf. also the kinetic phase

diagram in Fig. 25 for w 6= 0). Thus for typical situations with small selected |M|, the

minimal basic growth model for (001) is actually obtained by truncating out the higher

order terms indicated by the dots in Eq. (5.2). In this limit, we model the curvature

current J(curv) in Eq. (5.1) as described in § 2 — cf. Eq. (2.5) and Eq. (2.4) incorpo-

rating the effects of the vertical asymmetry (VA). The kinetic phase diagram in Fig. 25

is analytically deduced by stability analysis of the facets corresponding to the zeros of

J
(NE)(M) in Eq. (5.2) and further corroborated by relevant numerical simulations, to

yield the 45◦ rotation transition between PI and PII states shown in Fig. 25. There we

also see the intermediate OctP state, which occurs in a region in Fig. 25(a) where nei-

ther type I nor type II facets are stable. Although many-sided, the OctP state pyramids

have the same coordination (spatial arrangement) and thus qualitatively yield the same

Fourier transforms (i.e. nearly in-phase-diffraction pattern) as the four-sided pyramids

of a nearby checkerboard state — cf. Fig. 25(a). Within the model Eq. (5.2), the 45◦

rotation transition involving the OctP intermediate state occurs if (d−1)(c−d−1) < 0.

On the other hand, for

(d− 1)(c − d− 1) > 0 (5.3)

Eq. (5.2) yields a qualitatively different intermediate state that we call MultiP as

shown in Fig. 25(b), when the 45◦ rotation transition goes through a multi-stable re-

gion where type I and type II quartet facets are both stable. In this region, SD (i.e.

the out-of-phase-diffraction pattern) also has eight peaks — cf. Fig. 25(b). However, in

contrast to the SD of OctP in Fig. 25(a), the eight SD peaks of the MultiP in Fig. 25(b)

are not equivalent — note that the SD of MultiP structures is a superposition of the
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SD peak patterns from the nearby PI and PII states, with strong sharp peaks along

type II facet directions and broad weaker peaks along type I facet directions. This cor-

responds to multi-sided pyramids (with up to eight sides) with prominent type II facets

(like in the PII state) — cf. Figs. 25(b), 26(b), and 26(e). However, this state has the

same spatial pyramidal arrangement as the PI state — cf. the interface plots and their

FTs in Figs. 25(b) and 26(b,e,f). Thus the MultiP is a hybrid state, neither a PI nor

a PII state. For VA = 0, the MultiP state has the pyramid spatial arrangement of PI
already at early times. but for VA 6= 0 its pyramids initially form with the spatial ar-

rangement of PII — cf. Fig. 26(e, left panel). Eventually however, the pyramid lattice

rearranges, and the spatial arrangement becomes the same as that of the PI state —

cf. Fig. 26(e, right panel). This striking spatial rearrangement of the MultiP state is

also documented by the time sequence of FTs in Fig. 26(f). Close to the center of the

MultiP domain in Fig. 25(b), the VA-dominated early time morphologies persist over

time scales longer than the simulation times in Ref. [29], suggesting that VA on (001)

surfaces may produce the eventual (long time) interface morphologies not present for

zero VA. All these interesting VA effects on the structure of an interface have been found

in the regime where the MultiP state is realized, and in simulations no such dramatic

structural VA effects on the other OctP state for (001) surfaces were found.

5.2. Enhanced roughening of (001) surfaces

The pyramid sizes in the MultiP and OctP states grow as t1/3, both with and with-

out VA — cf. Fig. 26(d). Both intermediate states coarsen via local pyramid (or pit)

coalescence. These numerical results demonstrate the robustness of the t1/3 law for

growth via local pyramid coalescence. Indeed, for W = 0 and b = 1, pyramids form at

the isotropic transition point I in Fig. 25 with randomly oriented facets, and grow as t1/3

via local pyramid coalescence (cf. Ref. [18], and § 3.1 here). For realistic (001) surfaces

w ∼W 6= 0, when the transition always goes through the intermediate states in Fig. 25,

with pyramid facets oriented by (001) square anisotropy. However, as documented in

Fig. 26(d), they still grow as t1/3 via local coalescence as in the simulations [29].

Away from the intermediate states in Fig. 25, the sizes of four-sided pyramids in

the checkerboard states PI and PII grow as t1/4, both with and without VA — cf.

Fig. 26(g). This growth is mediated by motion of the topological defects (dislocations)

of the mesh of pyramid facet edges [18], as discussed in § 3.2 here — cf. Figs. 26(h)

and (i). Note that VA introduces two kinds of pyramid facet edges, sharp and blunt.

However, this VA-induced decoration of the edges mesh does not affect the topology of

the mesh of facet edges, with dislocations present as documented in Figs. 26(h) and (i).

In accord with the experiments [44], these results explain the striking insensitivity of

the (zero VA) checkerboard t1/4 growth law [18] to the presence of VA. We stress again

that this t1/4 coarsening behavior of the checkerboard occurs away from the 45◦ facet

rotation transition — i.e. the transition to the intermediate state. However, near the

intermediate states the coarsening mechanism of checkerboard pyramids changes into
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Figure 26: (a) OctP state: a superposition of its interface height contour plots and facet edges plots
(contour plots of the interface curvature magnitude). Note sharp (dark) edges at pyramid bases, and blunt
(faint) edges emerging from pyramid tops. (b) MultiP state pyramids, formed out of both type I and
type II facets: Note that the spatial arrangement of MultiP pyramids is as in phase I [see also Figs. 25(b)
and the panel (e) here]. (c) Square of interface width, < h2 > versus b for a fixed W for several times,
increasing from bottom to top: Note the enhanced roughening in the proximity of the intermediate state
(here, MultiP ) between the dashed lines. In panels (a) (b) and (c), VA= 0. In (d), (e), and (f): VA

effects on the MultiP intermediate state. (d) Interface width < h2 >1/2∼ t1/3, both with and without VA.
(e) Due to VA6= 0, at early times (left panel) the pyramids form with the spatial arrangement of phase II.
However, at later times (the right panel), the spatial pyramid arrangement turns into that of phase I. This
spatial rearrangement is illustrated also by the time sequence of FTs in (f), at t1 < t2 < t3. In (g), (h), and
(i): VA effects on checkerboard structure (away from intermediate states regions). (g) Interface width for

three different strengths of VA (increasing from zero, from bottom to top): < h2 >1/2∼ t1/4 both with and
without VA. Surface without [in (h)] and with VA [in (c)]. In (i), note blunt (faint) facet edges emerging
from pyramid tops, and sharp (dark) edges emerging from the pits.
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coalescence, yielding enhanced roughening manifest through the t1/3 growth at long

times, and also faster growth at short times — cf. Fig. 26(c). From the simulations, we

find that this t1/3 coarsening occurs both with and without VA — cf. Fig. 26(d).

Given our theoretical results, let us now discuss various recent experiments on

Ag(001) growth. Enhanced roughening has been seen by Stoldt et al. [38] near the

temperature of 100 degrees K, precisely where de Mongeot et al. [36] report the 45◦

facet rotation transition. Thus within a unified framework, our theory has related pre-

viously disconnected experimental findings on Ag(001) growth. We predict that either

the MultiP or the OctP state ubiquitously develops on Ag(001) and intervenes in the

45◦ rotation transition. Microscopically, this transition may be driven by Type I facet

destabilization (with decreasing temperature say), due to Schwoebel barriers on kinks

on the terrace steps of the Type I facets. These kinks are easily rounded by adatoms

only at high enough temperature, so the Phase I is stable there. With decreasing tem-

perature, the Type I facets may destabilize (or become less stable) due to the Schwoebel

barriers, and the Phase I may transform into the MultiP state that has the SD closer

to that of the Phase II — cf. Fig. 25(b). This scenario for the facet rotation transition

does indeed correspond to out-of-phase diffraction data — i.e. the slope distributions

changes seen on Ag(100) by de Mongeot and co-workers [36]. In contrast to our

model, the previous microscopic simulations of Ag(001) in Refs. [38–40] (by construc-

tion) do not allow for the 45◦ facet rotation transition suggested by the experiments in

Ref. [36]. However, it is interesting to note that the MultiP pyramids in Figs. 25(b)

and 26(b, e right panel) closely resemble (even for zero VA) the side-by-side arranged

pyramidal mounds observed in the microscopic simulations [40].

In summary, the model of Ref. [29] reviewed in this section exhibits a generic mul-

titude of interfacial states and transitions in epitaxial growth and erosion on (001)

crystal surfaces. The model shows that the 45◦ facet rotation phenomenon observed

on realistic (001) surfaces involves the formation of intermediate states (either MultiP
orOctP ), which exhibit an enhanced interface roughening. The results for out-of-phase

(SD) and in-phase (FT) diffraction patterns in Fig. 25 can be used to reveal the inter-

mediate states in future experiments and numerical studies. Finally, the results of [29]

reviewed here first elucidate the actual effects of the elusive vertical growth asymmetry

on various interfacial states on (001) crystal surfaces. On the theoretical side, we note

that from Eq. (5.2)

∂JNE
1

∂M2
− ∂JNE

2

∂M1
= 2(c − 2d)[M3

1M2 −M2M
3
1 ] , (5.4)

hence from the discussion in § 2 [cf. Eq. (2.16)], the model (5.2) can be generated

from an effective free energy only if c = 2d. With this parameter choice, the inequality

in Eq. (5.3) is easily seen to be satisfied, so within an effective free energy model the

MultiP state would be realized and the OctP state actually forbidden. However, there

is no reason (e.g. symmetry) to impose the condition that c = 2d, so in principle both
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MultiP and OctP states can be realized on the (001) surfaces of different materials.

6. Summary

Multilayer epitaxial growth and erosion by molecular beams exhibit the formation

of large scale surface structures, such as the pyramidal and rippled interfacial states

addressed in this review. Despite extensive experimental work, a deep understanding

of the laws governing the growth of these structures (interface coarsening) was missing

before the theoretical developments in the studies reviewed in this article [18,25–29].

This theory provides analytic explanations of the experimentally observed coarsening

laws, as detailed in § 3 and § 4.3. More importantly, it elucidates the detailed structure

of interfacial morphologies seen in the epitaxial growth and erosion, as reviewed in § 4

and § 5. Our theoretical approach involves both numerical simulation and the analysis

of continuum interface dynamics models for crystal surfaces of various symmetries. For

the major (001), (110), and (111) crystal surfaces, a wealth of theoretically and exper-

imentally significant results has been obtained from simple minimal models, based on

mass conservation of the deposited thin film and on respecting the symmetries of the

growing crystal surface. Conceptually, the theory establishes the relationship between

interface coarsening in epitaxial growth (growth of the facets of pyramids and ripples)

and more familiar phase ordering processes, such as the growth of ordered domains in

magnetic systems (spinodal decomposition). However, our theory of epitaxial growth

goes beyond the limits imposed in standard phase ordering theories that usually assume

an effective free energy governs the system dynamics. Thus as detailed in § 2, § 4.2 and

§ 5, it incorporates the effects of the ubiquitous vertical growth asymmetry not tractable

within an effective free energy approach. Also significant are the effects related to the

form of the non-equilibrium current, where novel interfacial states emerge due to the

absence of an effective free energy (even in the zero vertical asymmetry limit) — cf.

§ 4.1 and § 5.

Particularly important results from our approach relate to recent experimentally ob-

served far-from-equilibrium phase transitions on (110) and (001) crystal surfaces. The

theory in Refs. [25–28] reviewed in § 4 and § 5 provides non-equilibrium phase dia-

grams for these transitions, and also predicts and elucidates novel interfacial states in-

volved in these transitions, with some but not all previously observed. For example, the

Rhomboidal Pyramid State (§ 4.1) was theoretically predicted [25] and subsequently

seen in the experiments on (110) surfaces [33,35]. As noted by experimentalists [35],

observations also indicate the possible presence of the Buckled Rippled interface state

(§ 4.1), which is unusual in that it caries persistent (nonzero) surface currents that form

vortex patterns reminiscent of self-organized convective flow patterns in hydrodynam-

ics. This state owes its existence to the absence of the effective free energy in the gov-

erning interface dynamics. On the conceptual side, the existence of the Buckled Rippled

interface state demonstrates it is not generally true that the surface current must vanish

on the selected interfacial structures, as was previously commonly believed (although
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the surface current does indeed vanish in many interfacial states). Our theory has also

elucidated the structure of complex interfacial states, such as the Rectangular Rippled

states on (110) surfaces (§ 4.1 and § 4.2). In these states, it predicts the development

of long roof-like multifaceted objects (huts) that have since been seen on Ag(110) sur-

face [31, 34]. A major theoretical and conceptual finding on these structures is that

they are highly affected by the vertical growth asymmetry (§ 4.2). Indeed, the experi-

mental phenomenology of Rectangular Rippled states [30] can be understood in detail

only by invoking the effects of the vertical growth asymmetry. As discussed in § 4.2,

our theoretical results [27] in combination with experiments [30] on (110) surfaces

provide strong evidence that nonzero vertical growth asymmetry induces the forma-

tion of unique surface structures. Our approach also elucidates far-from-equilibrium

phase transitions on (001) surfaces (§ 5). It reveals that the experimentally observed

45◦ facet rotation phenomenon on (001) surfaces involves novel intermediate states

(MultiP or OctP ), which exhibit the observed enhanced interface roughening [36].

Finally, the results of [29] reviewed in § 5 first elucidated the actual effects of vertical

growth asymmetry on various interfacial states on (001) crystal surfaces.

In summary, using single models (one for each crystal surface symmetry type) the

continuum modeling discussed in this article provides a unified understanding of the

known experimental phenomenology in the epitaxial growth and erosion of crystal

surfaces. Our novel theoretical and conceptual framework elucidates the interfacial

dynamics, and predicts structures and transitions between the structures that have

been observed.
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