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Abstract. A weakly over-penalized symmetric interior penalty method is applied to

solve elliptic eigenvalue problems. We derive a posteriori error estimator of residual

type, which proves to be both reliable and efficient in the energy norm. Some numerical

tests are provided to confirm our theoretical analysis.
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1. Introduction

Adaptive finite element methods for solving partial differential equations based on a

posteriori error estimation are well developed. A posteriori error estimates for eigenvalue

problems made impressive progress in recent years — e.g. for conforming finite element

methods [16,20,22,23,25,26,30], nonconforming finite element methods [17,31,39], and

for mixed finite element methods [19,28]. However, in contrast to the Galerkin methods,

a posteriori analysis of the discontinuous Galerkin (DG) method for eigenvalue problems

is still very rare. In recent years, DG methods have received much attention due to their

suitability for hp-adaptive techniques and their flexibility in handling highly nonuniform

and unstructured meshes. In addition, the DG scheme can easily handle inhomogeneous

boundary conditions and curved boundaries. A posteriori error bounds for DG methods for

solving source problems have been extensively studied in the literature — cf. [1,5,21,27,

29,32–34,38] and references therein.

The weakly over-penalized symmetric interior penalty (WOPSIP) DG method was ini-

tially proposed by Brenner et al. [11] to solve second order elliptic equations. An a priori
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error estimate has been provided for application to second order elliptic equations [11], and

subsequently a residual-based a posteriori error estimator was derived [8]. From Ref. [11]

we know that the WOPSIP method has many advantages compared with other well-known

DG methods [2], including less computational complexity and its ease of implementation.

Moreover, the WOPSIP method has high intrinsic parallelism [9]. For these reasons, the

WOPSIP methods have been further developed to solve non-self-adjoint and indefinite

problems [42], biharmonic problems [10], Stokes equations [3], Reissner-Mindlin plate

equations [6] and variational inequalities [41]. However, the first detailed a posteriori

analysis of DG methods for eigenvalue problems is quite recent [24], and here we derive

a residual-based a posteriori estimator for a second order elliptic eigenvalue problem that

is both reliable and efficient. In Section 2, we first give some notation and then introduce

the WOPSIP method for the model problem. In Section 3, we present our residual-based

a posteriori error estimator, and demonstrate its reliability and efficiency. Some numerical

tests supporting our theoretical analysis are provided in Section 4, and our final remarks

appear in Section 5.

2. Problem Set-up and the WOPSIP Method

We consider the following elliptic eigenvalue problem:

−∆u= λu in Ω ,

u = 0 on Γ , (2.1)

where ∆ denotes the Laplacian operator and Ω ⊂ R2 is a bounded polygonal domain with

boundary Γ = ∂Ω. Let us now first introduce some notation. For a bounded domain D in

R2, we denote by Hs(D) the standard Sobolev space of functions with regularity exponent

s ≥ 0, associated with norm || · ||s,D and seminorm | · |s,D. When s = 0, H0(D) can be written

L2(D), and we denote the inner product in L2(D) by (·, ·)D . When D = Ω, the domain

subscript is dropped, and we set V = H1
0
(Ω) := {v ∈ H1(Ω) : v |Γ = 0}. After normalisation

for u, the weak formulation of the eigenvalue problem (2.1) reads:

Find (λ,u) ∈ R× V such that ||u||0 = 1 and

a(u,v) = λ(u,v) ∀v ∈ V , (2.2)

where

a(u,v) =

∫

Ω

∇u · ∇v d x

and ∇ denotes the gradient operator.

Let Th be a shape-regular decomposition of Ω into triangles {T}. We set hT = diam(T )

and h = maxT∈Th
hT , and denote by E I

h
the set of interior edges of the elements in Th.

The subset of edges on ∂Ω is denoted by E ∂
h

, so the set of all edges Eh = E
I
h
∪ E ∂

h
and he

is the length of the edge e ∈ Eh. For a subset D of R2, we denote by Pk(D) the space of

polynomials of degree less than or equal to k on D. Furthermore, we associate a fixed unit


