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Abstract. Nodal-type Newton-Cotes rules for fractional hypersingular integrals based

on the piecewise k-th order Newton interpolations are proposed. A general error esti-

mate is first derived on quasi-uniform meshes and then we show that the even-order

rules exhibit the superconvergence phenomenon — i.e. if the singular point is far away

from the endpoints then the accuracy of the method is one order higher than the general

estimate. Numerical experiments confirm the theoretical results.
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1. Introduction

Considering the integral

I u(x) =

∫ b

a

=
u(y)

|y − x |1+2s
d y, s ∈ [0,1), x ∈ (a, b), (1.1)

we note that it does not exist in usual sense and should be specifically defined. These

types of integrals are often referred to as Hadamard finite-part integrals or hypersingular

integrals. There are various definitions and we first consider the case where the singular

point is located at an interval end — cf. [22]. In this case the integral can be defined as
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∫ x

a

=
u(y)

(x − y)1+2s
d y := lim

ε→0

�∫ x−ε

a

u(y)

(x − y)1+2s
d y + r−(ε)

�

,

∫ b

x

=
u(y)

(y − x)1+2s
d y := lim

ε→0

�∫ b

x+ε

u(y)

(y − x)1+2s
d y + r+(ε)

�

,

(1.2)

where

r−(ε) =


















u(x−) lnε, s = 0,

u(−)
ε−2s

−2s
, s ∈ (0,1/2),

−u(x−)ε
−1 − u′(x−) lnε, s = 1/2,

u(x−)
ε−2s

−2s
− u′(x−)

ε1−2s

1− 2s
, s ∈ (1/2,1),

r+(ε) =


















u(x+) lnε, s = 0,

u(x+)
ε−2s

−2s
, s ∈ (0,1/2),

−u(x+)ε
−1 + u′(x+) lnε, s = 1/2,

u(x+)
ε−2s

−2s
+ u′(x+)

ε1−2s

1− 2s
, s ∈ (1/2,1),

and u(x−) and u(x+) are, respectively, the left and right limits of u at x . If x ∈ (a, b), then

we define the corresponding integral as

I u(x) := lim
ε→0

��∫ x−ε

a

+

∫ b

x+ε

�

u(y)

|y − x |1+2s
d y + r(ε)

�

, x ∈ (a, b), (1.3)

where

r(ε) = r−(ε) + r+(ε).

A function u(y) is said to be Hadamard finite-part integrable with respect to the weight

|y − x |−1−2s if the limit in the right-hand side of (1.3) exists. It is worth noting that if u(y)

has a strong regularity, then r(ε) can be represented as

r(ε) = u(x)

(
2 lnε, s = 0,

−
ε−2s

s
, s ∈ (0,1).

The approximation of hypersingular integrals plays an important role in numerical meth-

ods for various integral equations arising in acoustics [27], electromagnetics [20,26], heat

conduction [18]. Besides, equations with hypersingular integrals are also used in stress cal-

culation [3,9], fracture mechanics [1,2,4,8] and wave scattering [2,11,12]. A special atten-

tion has been paid to quadrature formulas for hypersingular integrals, including Gaussian


