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Abstract. A second-order nonlinear anisotropic diffusion-based model for Gaussian ad-

ditive noise removal is proposed. The method is based on a properly constructed edge-

stopping function and provides an efficient detail-preserving denoising. It removes addi-

tive noise, overcomes blurring effect, reduces the image staircasing and does not gener-

ate multiplicative noise, thus preserving boundaries and all the essential image features

very well. The corresponding PDE model is solved by a robust finite-difference based

iterative scheme consistent with the diffusion model. The method converges very fast

to the model solution, the existence and regularity of which is rigorously proved.
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1. Introduction

Image denoising is one of fundamental tasks in image processing. However, the classic

2D image filters often produce undesired blurring, which affects the edges and other es-

sential image details [10], so that a feature-preserving restoration still represents a serious

challenge.

The nonlinear partial differential equations (PDEs) have been increasingly used in the

image denoising and restoration in the last three decades. They provide a good solution to

the problem since Perona and Malik [18] introduced their celebrated anisotropic diffusion

algorithm. Since then, various nonlinear second-order diffusion-based restoration models

have been developed — cf. Refs. [5, 23]. On the other hand the total variation (TV) de-

noising scheme proposed by Rudin et al. [19], initiated the development of numerous PDE

variational filtering techniques [1,3,7,8,11,15,20,22].
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However, although such second-order PDE-based methods remove image blurring and

preserve boundaries, they may cause another unintended problem — viz. staircase (or

blocky) effect [6]. In contrast, nonlinear fourth-order diffusion-based models inspired by

the influential You-Kaveh scheme [24], can successfully remove additive Gaussian noise

and overcome the staircase effect — cf. [2,4]. Nevertheless, the over-filtering of the fourth-

order diffusion models often affects the image and may produce undesired multiplicative

speckle noise.

In this work, we develop a novel PDE-based technique, which successfully removes

the additive noise, while avoiding or alleviating all the unintended effects mentioned. It

is based on an improved second-order anisotropic diffusion model and a two-dimension

Gaussian filter kernel. This model is discussed in Section 2 below. Section 3 deals with

a fast-converging numerical approximation scheme based on the finite difference method

in [9, 12] and consistent with the model under consideration. A rigorous mathematical

analysis of this PDE-based model is provided in Section 4. In particular, we prove the exis-

tence and regularity of the classical solution for the corresponding nonlinear second-order

diffusion-based scheme. In Section 5, we demonstrate the effectiveness of this restora-

tion approach and compare it with other denoising models using the image quality mea-

sures [21]. Our conclusions are in Section 6.

2. A Nonlinear Second-Order Anisotropic Diffusion Model

We consider a novel second-order anisotropic diffusion-based model, which provides

an effective detail-preserving image restoration. It is based on a boundary value problem

for a nonlinear PDE — viz.

∂

∂ t
u−ηu (‖∇Gσ ∗ u‖)∇ · (Ψu(‖∇u‖)∇u) +α(u− u0) = 0,

u(0, x1, x2) = u0(x1, x2), (x1, x2) ∈ Ω ⊂ R2,

u(t, x1, x2) = 0, t ∈ [0, T ], ∀(x1, x2) ∈ ∂Ω,

(2.1)

where α ∈ (0,1], u0 is the observed image, Gσ the Gaussian kernel,

Gσ(x1, x2) =
1

2πσ2
exp

�

−
x2

1
+ x2

2

2σ2

�

determined by the standard deviation parameter σ > 0, and ‖ · ‖ refers to the L2 norm.

The function ηu : (0,∞)→ (0,∞) in the PDE-based model (2.1) has the form

ηu(s) =

�

λsk + ν
�1/(k+1)

ξ
,

where λ,ν ∈ (0,4], ξ ≥ 1.5, k ∈ (0,2]. It is worth noting that the term ηu (‖∇Gσ ∗ u‖)
controls the speed of this diffusion process and enhances the edges of the corresponding

image.
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The edge-stopping (diffusivity) function Ψu : [0,∞)→ [0,∞) in (2.1) has the form

Ψ
u(s) = ǫ

�

δ(u)

β ln(δ(u)) + γs2
1

�1/3

, (2.2)

where ǫ ∈ (0,2), γ ∈ (1,5], β ∈ (0,1), and the conductance parameter δ is defined by

δ(u) := |rµ(‖∇u‖) + ζM (‖∇u‖)| , r > 0, ζ ∈ (0,1)

with the respective averaging and median operators µ andM .

The function (2.2) satisfies the main requirements for a successful restoration [3, 23]

— e.g. it is positive, monotonically decreasing in (0,∞) and lims→∞Ψ
u(s) = 0.

Because of the presence of the term ηu (‖∇Gσ ∗ u‖), the nonlinear operator in the

Eq. (2.1) does not represent the gradient of the energy functional. Therefore, the proposed

second-order nonlinear diffusion-based scheme cannot be obtained from the minimisation

of any energy cost functional, so that this scheme is not a variational PDE model.

The restored image is obtained from an observed image by solving the anisotropic dif-

fusion model (2.1). The solution of this equation can be derived by the iterative algorithm

introduced in the next section.

3. Consistent Numerical Approximation Algorithm

In this section we propose a robust numerical approximation scheme based on the finite

difference method [9,12] for the non-linear model (2.1). More precisely, let h and ∆t be,

respectively, space and time grids and let

x := ih, y := jh, t := n∆t for all i ∈ {0, · · · , I}, j ∈ {0, · · · , J}, n ∈ {0, · · · , N}

with the image frame Ih× Jh.

The partial differential equation in (2.1) can be written in the form

∂

∂ t
u = ηu (‖∇Gσ ∗ u‖)

�

∂

∂ x1

(Ψu(‖∇u‖)ux1
) +

∂

∂ x2

(Ψu(‖∇u‖)ux2
)

�

−α(u− u0) (3.1)

and discretised as follows. First, we compute the terms ηi, j = ηu(‖(Gσ ∗ u)i, j‖) and Ψi, j =

Ψ
u(‖ui, j‖), approximating the gradient magnitude by central differences [9,12]:

‖ui, j‖=

�

�

ui+h, j − ui−h, j

2h

�2

+

�

ui, j+h − ui, j−h

2h

�2
�1/2

.

In addition, the terms

∂

∂ x1

(Ψu(‖∇u‖)ux1
),

∂

∂ x2

(Ψu(‖∇u‖)ux2
)
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are, respectively, discretised as

Ψi+h/2, j(ui+h, j − ui, j)−Ψi−h/2, j(ui, j − ui−h, j),

Ψi, j+h/2(ui, j+h − ui, j)−Ψi, j−h/2(ui, j − ui, j−h),

where

Ψi±h/2, j =
Ψi±h, j +Ψi, j

2
,

Ψi, j±h/2 =
Ψi, j±h +Ψi, j

2
.

The forward differences are then applied to the time derivative [12] and we arrive at the

following implicit discretisation of the Eq. (3.1):

un+∆t
i, j
− un

i, j

∆t
= ηi, j

�

Ψi+h/2, j(u
n
i+h, j
− un

i, j)−Ψi−h/2, j(u
n
i, j − un

i−h, j
)

+Ψi, j+h/2(u
n
i, j+h
− un

i, j)−Ψi, j−h/2(u
n
i, j − un

i, j−h
)
�

−α(un
i, j − u0

i, j). (3.2)

Using the parameters ∆t = 1 and h = 1, we rewrite the implicit approximation algorithm

(3.2) as an explicit numerical approximation scheme — viz.

un+1
i, j = un

i, j

�

1−α−ηi, j

�

Ψi+1/2, j +Ψi−1/2, j +Ψi, j+1/2 +Ψi, j−1/2

��

+ un
i+1, jηi, jΨi+1/2, j + un

i−1, jηi, jΨi−1/2, j

+ un
i, j+1
ηi, jΨi, j+1/2 + un

i, j−1
ηi, jΨi, j−1/2 +αu0

i, j
, (3.3)

where un
0, j
= un

1, j
, un

I , j
= un

I+1, j
, un

i,0
= un

i,1
and un

i,J
= un

i,J+1
. The iterative numerical

approximation algorithm (3.3) is stable, consistent with nonlinear diffusion-based model

(2.1) and converges fast to the exact solution representing the restored image.

4. The Validity of the Diffusion Model

In this section we study the validity of the above nonlinear model. In particular, we

analyse the solvability of the model and the regularity of its solutions.

Let k be a positive integer and 1≤ p ≤∞. We denote by W k,2k
p (Q) the Sobolev space

W k,2k
p (Q) :=

§

y ∈ Lp(Q) :
∂ r

∂ t r

∂ q

∂ xq
y ∈ Lp(Q), for 2r + q ≤ k

ª

,

— cf. Ref. [13, p. 5], where Q := (0, T ]×Ω. Moreover, let C1,2(Q̄) (C1,2(Q)) denote the set

of all functions continuous in Q̄ (Q) along with their derivatives ut , ux , ux x and W
2−2/p
∞ (Ω),

W l ,l/2
p
(Σ) the corresponding Sobolev spaces with a non integral l — cf. [13, pp. 70, 81].



Compound PDE-Based Additive Denoising Solution 5

Now we consider the problem (2.1) in a bounded domain Ω ⊂ R2 with the boundary

∂Ω ∈ C2 for a finite time T > 0, so that

∂

∂ t
u(t, x1, x2) = ηu (‖∇Gσ ∗ u‖) div (Ψu(‖∇u‖)∇u)

−α(u(t, x1, x2)− u0(x1, x2)) + f (t, x1, x2) in Q,

∂

∂ ν
u(t, x1, x2) = 0 on Σ,

u(0, x1, x2) = u0(x1, x2) on Ω,

(4.1)

where Σ := (0, T ]×∂Ω, u0(x1, x2) ∈W
2−2/p
∞ (Ω), p ≥ 2 and ∂ u0(x1, x2)/∂ ν = 0. The other

terms in (4.1) are as before.

Definition 4.1. Any solution of the problem (4.1) is called the classical solution if it is

continuous in Q̄ and has continuous derivatives ut , ux , ux x in Q.

For the sake of convenience, we rewrite the problem (4.1) in the following equivalent

form
∂

∂ t
u(t, x1, x2)−ηu (‖∇Gσ ∗ u‖)

∂

∂ ux j

�

Ψ
u(‖∇u‖)uxi

�

ux j xi

+ A(t, x1, x2,u,uxi
) = α u0(x1, x2) + f (t, x1, x2) in Q,

∂

∂ ν
u(t, x1, x2) = 0 on Σ,

u(0, x1, x2) = u0(x1, x2) on Ω,

(4.2)

where

A(t, x1, x2,u,uxi
) = −ηu (‖∇Gσ ∗ u‖)

�

∂

∂ u

�

Ψ
u(‖∇u‖)uxi

�

uxi
+
∂

∂ x i

�

Ψ
u(‖∇u‖)uxi

�

�

+α u(t, x1, x2)

and

uxi
:=

∂

∂ x i

u(t, x1, x2), ux j xi
:=

∂ 2

∂ x j∂ x i

u(t, x1, x2), i, j = 1,2.

Our study of the solvability of the problem (4.2) in the space W 1,2
p (Q) is based on the Leray-

Schauder degree theory and the Lp-theory of linear and quasi-linear parabolic equations

[13]. More precisely, the following theorem is true.

Theorem 4.1. Let u(t, x1, x2) ∈ C1,2(Q) be a classical solution of Eq. (4.2) such that

∂

∂ ν
u(t, x1, x2) = 0

on the lateral surface Σ of the cylinder Q and for positive numbers M , M1, M2 and M3 one has
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I1. If (t, x1, x2) ∈ Q, then |u(t, x1, x2)| < M and for arbitrary q, the function Ψu(‖∇u‖)q is

continuous, differentiable with respect to x = (x1, x2), u and q and satisfies the condition

of uniform parabolicity — i.e.

ν|y|2 ≤
∂

∂ q j

(Ψu(‖∇u‖)q)yi y j ≤ µ|y|
2, ν > 0, y ∈ Rn,

and
�

|Ψu(‖∇u‖)uxi
|+

�

�

�

�

∂

∂ u
(Ψu(‖∇u‖)uxi

)

�

�

�

�

�

(1+ |q|)

+

�

�

�

�

∂

∂ x1

(Ψu(‖∇u‖)ux1
)

�

�

�

�

+

�

�

�

�

∂

∂ x2

(Ψu(‖∇u‖)ux1
)

�

�

�

�

+

�

�

�

�

∂

∂ x1

(Ψu(‖∇u‖)ux2
)

�

�

�

�

+

�

�

�

�

∂

∂ x2

(Ψu(‖∇u‖))ux2

�

�

�

�

+ |u(t, x1, x2)| ≤ µ(1+ |q|)
2. (4.3)

I2. For any sufficiently small ǫ > 0, the functions ηu,u and Ψu satisfy the inequalities

ηu (‖∇Gσ ∗ u‖) < M1, ‖u‖
Ls(Q)
≤ M3, ‖Ψu(‖∇u‖)uxi

‖
Lr (Q)
< M2, i = 1,2,

where

r =

¨

max{p, 4}, p 6= 4,

4+ ǫ, p = 4,
and s =

¨

max{p, 2}, p 6= 2,

2+ ǫ, p = 2.

Then, for any f ∈ Lp(Q) and u0 ∈ W
2−2/p
∞ (Ω), p 6= 3/2, the problem (4.2) has a solution

u ∈W 1,2
p
(Q), such that

‖u‖
W

1,2
p (Q)
≤ C
�

‖u0‖W 2−2/p
∞ (Ω)

+ ‖ f ‖Lp(Q)

�

, (4.4)

where the constant C > 0 is independent of u and f .

Proof. To prove this theorem, we use the Leray-Schauder principle. Consider the Banach

space B = W 0,1
p (Q) endowed with the norm ‖v‖B = ‖v‖Lp(Q) + ‖vx‖Lp(Q), and a nonlinear

operator H defined by

H(v,λ) := u(v,λ) for all (v,λ) ∈W 0,1
p (Q)× [0,1], (4.5)

where u(v,λ) is the unique solution to the following linear boundary value problem

∂

∂ t
u(t, x1, x2)−

�

ληv(‖∇Gσ ∗ v‖)
∂

∂ vx j

(Ψ v(‖∇v‖)vxi
) + (1−λ)δ j

i

�

× uxi x j
= −λ
�

A(t, x1, x2, v, vxi
)−α u0(x1, x2) + f (t, x1, x2)

�

in Q,

∂

∂ ν
u(t, x1, x2) = 0 on Σ,

u(0, x1, x2) = λu0(x1, x2) on Ω.

(4.6)

Our theorem will be proved if we show that the nonlinear operator H has two properties:
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A. The operator H is well-defined.

B. The operator H is continuous and compact.

We start with the definition of the operator H.

A. The operator H is well-defined if the problem (4.6) has a unique solution. The

Eq. (4.6) shows that if v ∈ W 0,1
p (Q), then A(t, x1, x2, v, vxi

) + f (t, x1, x2) ∈ Lp(Q) and

according to [13, p. 341-342], the problem (4.6) has unique solution u such that

u = u(v,λ) ∈W 1,2
p (Q), ∀v ∈W 0,1

p (Q), ∀λ ∈ [0,1].

Taking into account that W 1,2
p (Q) ⊂ W 0,1

p (Q) — cf. [14, p. 24], we obtain that H(v,λ) =

u ∈W 0,1
p (Q) for all v ∈W 0,1

p (Q) and λ ∈ [0,1].

B. Let us now show that H is continuous and compact. Let vn → v in W 0,1
p (Q) and

λn→ λ in [0,1]. Using the notation

un,λn = H(vn,λn), un,λ = H(vn,λ) and uλ = H(v,λ)

and considering the difference H(vn,λn) − H(vn,λ), we obtain from the Eqs. (4.5) and

(4.6) that

∂

∂ t
(un,λn − un,λ)−

�

ληvn(‖∇Gσ ∗ vn‖)
∂

∂ vn
x j

(Ψ vn

(‖∇vn‖)vn
xi
) + (1−λ)δ j

i

�

× (un,λn
xi x j
− un,λ

xi x j
) = −(λn −λ)
§

�

ηvn(‖∇Gσ ∗ vn‖)
∂

∂ vn
x j

(Ψ vn

(‖∇vn‖)vn
xi
)−δ j

i

�

un,λn
xi x j

+ A(t, x , vn, vn
xi
)−α u0(x1, x2) + f (t, x1, x2)

ª

in Q,

∂

∂ ν
(un,λn − un,λ) = 0 on Σ,

(un,λn − un,λ)(0, x1, x2) = (λn −λ)u0(x1, x2) in Ω.

(4.7)

The right-hand side in (4.7) belongs to Lp(Q), since un,λn ∈ W 1,2
p
(Q). Therefore, the Lp-

theory of PDE yields the estimate

‖un,λn − un,λ‖
W

1,2
p (Q)
≤C |λn−λ|

�












�

ηvn(‖∇Gσ ∗ vn‖)
∂

∂ vn
x j

(Ψ vn

(‖∇vn‖)vn
xi
)−δ j

i

�

un,λn
xi x j













Lp(Q)

+‖A(t, x , vn, vn
xi
)‖Lp(Q) + ‖u0‖W 2−2/p

∞ (Ω)
+ ‖ f ‖Lp(Q)

�

with a constant C(|Ω|, p,α, M , M1, M2, M3).

The inequality (4.3), condition I2 and the inclusion u
n,λn
xi x j
∈ Lp(Q) imply the bounded-

ness of A(t, x , vn, vn
xi
),
�

ηvn(‖∇Gσ∗v
n‖) ∂∂ vn

x j

(Ψ vn

(‖∇vn‖)vn
xi
)−δ j

i

�

u
n,λn
xi x j

, u0 and f in Lp(Q),

and since λn→ λ, we obtain

‖un,λn − un,λ‖
W

1,2
p (Q)
→ 0 for n→∞. (4.8)
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In order to evaluate the difference H(vn,λ)−H(v,λ), we use (4.5) and (4.6), so that

∂

∂ t
(un,λ − uλ)−
�

ληvn(‖∇Gσ ∗ vn‖)
∂

∂ vn
x j

(Ψ vn

(‖∇vn‖)vn
xi
) + (1−λ)δ j

i

�

× (un,λ
xλ x j
− uλxi x j

) = −λ
�

ηvn(‖∇Gσ ∗ vn‖)
∂

∂ vn
x j

(Ψ vn

(‖∇vn‖)vn
xi
)

−ηv(‖∇Gσ ∗ v‖)
∂

∂ vx j

(Ψ v(‖∇v‖)vxi
)

�

uλ
xi x j

−λ[A(t, x , vn, vn
xi
− A(t, x , v, vxi

)] in Q,

∂

∂ ν
(un,λ − uλ) = 0 on Σ,

(un,λ − uλ)(0, x1, x2) = 0 on Ω.

(4.9)

Using the Lp-theory of PDE again, we arrive at the estimate

‖un,λ − uλ‖
W

1,2
p (Q)
≤ C

�











�

ηvn(‖∇Gσ ∗ vn‖)
∂

∂ vn
x j

(Ψ vn

(‖∇vn‖)vn
xi
)

−ηv(‖∇Gσ ∗ v‖)
∂

∂ vx j

(Ψ v(‖∇v‖)vxi
)
�

uλxi x j













Lp(Q)

+ ‖A(t, x , vn, vn
xi
)− A(t, x , v, vxi

)‖Lp(Q)

�

with a constant C . Since all terms in the right-hand side of this inequality are bounded and

vn converges to v in W 0,1
p (Q), it follows that

‖un,λ − uλ‖
W

1,2
p (Q)
→ 0 as n→∞. (4.10)

Making use of the relations (4.8) and (4.10), we show the continuity of the nonlinear ope-

rator H. Moreover, the mapping H defined by (4.5) is compact, what can easily be seen by

writing it as the composition

B =W 0,1
p
(Q)× [0,1]→W 1,2

p
(Q) ,→ B =W 0,1

p
(Q),

where the second map is an compact inclusion due to Lions-Peeter embedding theorem —

cf. Ref. [14, p. 21].

Now we establish the existence of a number δ > 0 such that

(u,λ) ∈W 0,1
p
(Q)× [0,1] with u = H(u,λ)⇒ ‖u‖B < δ. (4.11)
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The equality u = H(u,λ) in (4.11) is equivalent to

∂

∂ t
u(t, x1, x2)−
�

ληu(‖∇Gσ ∗ u‖)
∂

∂ ux j

(Ψu(‖∇u‖)uxi
) + (1−λ)δ j

i

�

× uxi x j
= −λ
�

A(t, x1, x2,u,uxi
)−α u0(x1, x2) + f (t, x1, x2)

�

in Q,

∂

∂ ν
u(t, x1, x2) = 0 on Σ,

u(0, x1, x2) = λu0(x1, x2) on Ω.

(4.12)

Taking into account the Lp-theory of PDFs, assumptions (4.3) and I2, for p 6= 3/2 we

conclude that

‖u‖
W

1,2
p (Q)
≤ C
�

‖u0‖W2−2/p
∞ (Ω)

+ ‖ f ‖Lp(Q)

�

(4.13)

with a constant C(|Ω|, p,α,ν, M , M1 , M2, M3) > 0. This inequality and the embedding

W 1,2
p (Q) ⊂W 0,1

p (Q) yield

‖u‖
W

0,1
p (Q)
≤ C‖u‖

W
1,2
p (Q)

,

thus confirming the validity of (4.11).

Considering the ball

Bδ := {u ∈ B : ‖u‖B < δ}

we note that the inequality (4.11) implies that H(u,λ) 6= u for any u ∈ ∂ Bδ and λ ∈ [0,1],

provided that δ > 0 is sufficiently large. Moreover, following the arguments of [16] and

[17], we conclude that the problem (4.2) has a solution u ∈ W 1,2
p (Q), and the inequality

(4.13) leads to the estimate (4.4).

Remark 4.1. The nonlinear operator H in (4.5) depends on λ ∈ [0,1] and for λ = 1 its

fixed points are the solutions of (4.2)

5. Restoration Experiments and Method Comparison

The proposed diffusion-based restoration approach has been successfully tested on the

images corrupted by white additive Gaussian noise. The images were acquired from the

USC - SIPI database.

The performance of this technique has been assessed by the Peak Signal to Noise Ratio

(PSNR), the Signal to Noise Ratio (SNR) and Mean-squared Error (MSE) — cf. Ref. [17].

The following set of the model parameters

α= 0.6, λ= 1.3, ν = 1.5, k = 0.35, ξ= 1.66, ǫ = 0.5,

γ= 3.7, β = 0.4, r = 0.6, ζ = 0.25, N = 12

ensures optimal image restoration. It was empirically identified by the trial and error

method. It is worth noting that the method successfully removes additive noise, overcomes

blurring effect, reduces the image staircasing and does not generate multiplicative noise,
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Table 1: Average PSNR and SSIM for several �ltering models.

Image Filtering technique Peak Signal to Noise Ratio Structural Similarity Index

The proposed AD restoration 29.6128 (dB) 0.8751

Gaussian 2D filter 23.1857 (dB) 0.4532

Average filter 24.9836 (dB) 0.5174

Wiener 2D filter 25.7205 (dB) 0.8271

Perona-Malik 1 25.4753 (dB) 0.6789

Perona-Malik 2 26.1462 (dB) 0.7514

ROF - TV Denoising 27.8543 (dB) 0.8356

Figure 1: The restoration of the Boat image.
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thus preserving boundaries and all the essential image features very well. Moreover, since

the iterative numerical algorithm for the corresponding PDE converges fast to the optimal

restoration, the method requires a low execution time, which depends on the amount of

noise present.

Comparing this method with the existing PDE and non-PDE restoration models, we ob-

serve that it clearly outperforms the conventional two-dimension image filters [10] such

as average, Gaussian 2D and Wiener, and also the linear PDE-based filters, providing a

better denoising and avoiding the undesired blurring effect. It also outperforms the non-

linear second-order diffusion-based and variational schemes motivated by Perona-Malik

and ROF-TV denoising models [5,19,23], which encounter difficulties with staircase effect.

Moreover, the solutions obtained by this method are better than even those found by the

fourth-order You-Kaveh alike PDE models [24], since there is no multiplicative (speckle)

noise, the edgesand, the other image details are better preserved and the execution is much

faster.

Table 1 shows the average PSNR and SSIM (Structural Similarity Index) for various

denoising methods, with the introduced anisotropic diffusion (AD) approach achieving the

best results. Note that the other methods data are taken of [21].

Fig. 1 demonstrates one of numerous filtering simulations for the Boat image. The

original image from USC-SIPI database, is corrupted by the Gaussian additive noise char-

acterised by µ = 0.11 and the variance 0.02 — cf. Fig. 1(b). The restoration results for

various methods are presented in Figs. 1(c)-1(i).

6. Conclusions

We propose a novel second-order nonlinear anisotropic diffusion-based model for Gaus-

sian additive noise removal. The method is based on a properly constructed edge-stopping

function and provides an efficient detail-preserving denoising. The corresponding PDE

model is solved by a robust finite-difference based iterative approximation scheme con-

sistent with the diffusion model. The method converges very fast to the model solution,

the existence and regularity of which is rigorously proved.

The proposed restoration method successfully removes additive noise, overcomes blur-

ring effect, reduces the image staircasing and does not generate multiplicative noise, thus

preserving boundaries and all the essential image features very well. It outperforms many

other approaches and can be used in edge detection and object detection models and in

image inpainting problems.
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