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Abstract. Linear partial differential equations in (3 + 1)-dimensions consisting of all

mixed second-order derivatives are considered, and Maple symbolic computations are

made to construct their lump and interaction solutions, including lump-periodic, lump-

kink and lump-soliton solutions.
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1. Introduction

Lump solutions are special exact solutions of partial differential equations (PDFs),which

describe important wave phenomena [1,29]. Specific lumps can be obtained from solitons

through taking long wave limits [30]. Other classes of solutions to integrable equations

include positons and complxitons [16, 35], and interaction solutions [26], which exhibit

more diverse nonlinear wave phenomena.

From a mathematical point of view, soliton solutions are exponentially localised in time

and in all space directions, whereas lump solutions are rationally localised in all space

∗Corresponding author. Email addresses: mawx�
as.usf.edu (W. X. Ma)

http://www.global-sci.org/eajam 185 c©2019 Global-Science Press



186 W. X. Ma

directions. Let P be a polynomial, and Dx and Dt be the Hirota bilinear derivatives. Based

on the Hirota bilinear form

P(Dx , Dt) f · f = 0,

the corresponding N -soliton solution in (1+ 1)-dimensions can take the form

f =

N
∑

i, j=1

exp(

N
∑

i=1

µiξi +
∑

i< j

µiµ jai j),

where µ j ∈ {0,1}, j = 1,2, · · · , N , and

ξi = ki x −ωi t + ξi,0, 1≤ i ≤ N ,

eai j = −
P(ki − k j,ω j −ωi)

P(ki + k j,ω j +ωi)
, 1≤ i < j ≤ N ,

with the wave numbers ki and the wave frequencies ωi satisfying the dispersion relation,

and ξi,0 being arbitrary shifts.

It is known [21] that the KPI equation

(ut + 6uux + ux x x )x − uy y = 0

has the lump solution

u = 2(ln f )x x , f =
�

a1 x + a2 y + a3 t + a4

�2
+
�

a5 x + a6 y + a7 t + a8

�2
+ a9,

where

a3 =
a1a2

2 − a1a6
2 + 2, a2a5a6

a1
2 + a5

2
, a7 =

2a1a2a6 − a2
2a5 + a5a6

2

a1
2 + a5

2
, a9 =

3(a1
2 + a5

2)3

(a1a6 − a2a5)
2

,

and a1a6 − a2a5 6= 0. The last condition guarantees the rational localisation in all direc-

tions in the (x , y)-plane. There are many other integrable equations with lump solutions —

e.g. three-dimensional three-wave resonant interaction [8], BKP equation [5, 38], Davey-

Stewartson equation II [30], Ishimori-I equation [7] — cf. also Refs. [27, 46]. Moreover,

non-integrable equations can also have lump solutions [2,24,43,44], and there are interac-

tion solutions of nonlinear integrable equation in (2+1)-dimensions, including lump-soliton

interaction solutions [25,39,41,42] and lump-kink interaction solutions [9,31,45,48]. In

(3 + 1)-dimensions, only the integrable Jimbo-Miwa equation has been known to have

lump-type solutions, rationally localised in almost all (but not all) space directions. On the

other hand, all analytical rational solutions of the (3+ 1)-dimensional Jimbo-Miwa equa-

tion in [22,40,47] and of the (3+1)-dimensional Jimbo-Miwa like equation in [6] are not

rationally localised in all space directions, either. Therefore, in (3 + 1)-dimensions, lump

and interaction solutions of PDEs are interesting objects to study.

The aims of this work is to show the existence of lump and interaction solutions of PDEs

in (3+ 1)-dimensions. A class of particular examples of equations in (3+ 1)-dimensions is


