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Abstract. A fast and accurate exponential Runge-Kutta method for a class of time-

dependent advection-diffusion-reaction equations is developed. To discretise the convec-

tion term, a modified upwind difference scheme is used. This allows to avoid numerical

oscillation and achieve second order spatial accuracy. The method demonstrates good

stability and numerical examples show the applicability of the method to advection-

diffusion-reaction problems with stiff nonlinearities.
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1. Introduction

Advection-diffusion-reaction equations are widely used in diverse applications, includ-

ing atmospheric air and groundwater pollution and bacterial and tumour growth [9]. In

this paper, we consider advection-diffusion-reaction equations of the form

∂ u

∂ t
= Lu− f (u), x ∈ Ω, t ∈ [t0, t0 + T ], (1.1)

where Ω ⊂ Rd is an open rectangular domain, f (u) a reaction function, T > 0 the duration

time, and operator L is defined by

Lu=∇ · (D∇u)− b · ∇u

with a diffusion diagonal matrix D > 0 having constant leading diagonal entries (d1, d2, · · · ,
dd) and a convective velocity b = (b1, b2, · · · , bd)

T .
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The Eq. (1.1) is often accompanied by an initial condition u|t=t0
= u0 for x ∈ Ω and certain

boundary conditions.

Numerical methods for the model equation (1.1) attracted considerable attention in

the past decades — cf. [9]. The use of exponential integrators in time discretisation turned

out to be very efficient, especially in advection-diffusion-reaction problems involving stiff

nonlinearities. The family of exponential integrators are based on the approximation of the

respective integral formulation of nonlinear terms in the differential equation, finding the

exact solution of the linear part and computing the exponential of a matrix. Caliari et al. [1]

proposed a second-order exponential integrator for semi-discretised advection-diffusion-

reaction equations by coupling exponential like Euler and midpoint integrators. Nie et al.

[17] used the compact form of the integration factor methods to develop an implicit inte-

gration factor method that serves as an efficient class of time-stepping methods for reaction

diffusion systems with both stiff reaction and diffusion terms in high spatial dimensions.

Later on, Zhao et al. [21] combined the integration factor method with WENO to solve

advection-diffusion-reaction equation. Tambue et al. [18] applied the real Leja points tech-

nique to obtain an exponential time integrator for advection-dominated reactive transport

in highly heterogeneous porous media. Jiang and Zhang [10] studied the Krylov implicit

integration factor WENO methods for semi-linear and fully nonlinear advection-diffusion-

reaction equations. Recently, Ju and Wang [12] considered a compact exponential time

differencing Gauge method for incompressible viscous flows.

Although exponential integrators can solve the linear part exactly in time, matrix expo-

nentials have to be involved and this is a notoriously difficult problem in numerical anal-

ysis [16]. Recently, an efficient exponential time differencing method has been presented

in [14]. It uses a compact representation of the central difference scheme for spatial dis-

cretisation and allows to use FFT-based fast calculation of matrix exponentials. The method

utilises a high order multi-step integration factor in time scheme along with usual splitting

technique for treating stiff nonlinearities incorporated into the resulting scheme. It im-

proves stability and does not require solving nonlinear systems. The method was extended

to the Cahn-Hilliard equation and successfully used in computing material coarsening rates

under constant and variable mobilities — cf. [13]. We also note efficient and stable expo-

nential Runge-Kutta methods for parabolic equations developed in [22] and fast high-order

compact exponential time differencing Runge-Kutta methods for second-order semi-linear

parabolic equations proposed in [23]. However, to the best of authors’ knowledge, so far

this fast compact exponential time differencing Runge-Kutta method has been not applied

to advection-diffusion-reaction equations.

Here, we develop a fast compact exponential time differencing Runge-Kutta method

for the advection-diffusion-reaction equation (1.1). It uses the modified upwind difference

scheme from [24] in order to discretise the convection term. As the result, there is no

numerical oscillation and the method has second order accuracy in space direction. Com-

bining the stabilised compact explicit exponential time differencing Runge-Kutta method

from [22] and a modified upwind difference scheme, we establish a novel compact expo-

nential time differencing Runge-Kutta method for the Eq. (1.1). This method has second

order spacial accuracy and good stability, while the FFT-based fast calculation techniques


