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AN EFFICIENT MULTIGRID METHOD FOR GROUND STATE

SOLUTION OF BOSE-EINSTEIN CONDENSATES

NING ZHANG, FEI XU, AND HEHU XIE

Abstract. An efficient multigrid method is proposed to compute the ground state solution of
Bose-Einstein condensations by the finite element method based on the combination of the multi-
grid method for nonlinear eigenvalue problem and an efficient implementation for the nonlinear
iteration. The proposed numerical method not only has the optimal convergence rate, but also has

the asymptotically optimal computational efficiency which is independent from the nonlinearity
of the problem. The independence from the nonlinearity means that the asymptotic estimate of
the computational work can reach almost the same as that of solving the corresponding linear
boundary value problem by the multigrid method. Some numerical experiments are provided to

validate the efficiency of the proposed method.
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1. Introduction

It is well known that Bose-Einstein condensation (BEC), which is a gas of bosons
that are in the same quantum state, is an important and active field [2, 3, 4, 12, 19]
in physics. The properties of the condensate at zero or very low temperature [13, 21]
can be described by the well-known Gross-Pitaevskii equation (GPE) [15] which is
a time-independent nonlinear Schrödinger equation [20].

Since this paper considers the numerical method for the nonlinear eigenvalue
problem, we are concerned with the following non-dimensionalized GPE problem:
Find λ ∈ R and a function u such that

(1)

 −∆u+Wu+ ζ|u|2u = λu, in Ω,
u = 0, on ∂Ω,∫

Ω
|u|2dΩ = 1,

where Ω ⊂ Rd (d = 1, 2, 3) denotes the computing domain which has the cone
property [1], ζ is some positive constant and W (x) = γ1x

2
1 + . . . + γdx

2
d ≥ 0 with

γ1, . . . , γd > 0 [5, 29]. It is well known that the ground state solution for (1) is
unique.

The convergence of the finite element method for GPEs is first proved in [29]
and [8] gives prior error estimates which will be used in the analysis of our method.
There also exist two-grid finite element methods for GPE in [9, 10, 17]. Recently, a
type of multigrid method for eigenvalue problems has been proposed in [22, 24, 25,
26, 27]. Especially, [27] gives a multigrid method for GPE (1) and the corresponding
error estimates. This type of multigrid method is designed based on the multilevel
correction method in [22], and a sequence of nested finite element spaces with
different levels of accuracy which can be built in the same way as the multilevel
method for boundary value problems [28]. The corresponding error estimates have
already been obtained in [27]. Furthermore, the estimate of computational work
has also been given in [27]. The computational work of the multigrid in [27] is linear
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scale but depends on the nonlinearity (i.e. the value of ζ) in some sense. The aim of
this paper is to improve the efficiency further with a special implementing method
for the multigrid iteration by using the tensor tool [14] for the GPE. With the tensor
tool, the nonlinear iteration can be implemented only in the coarsest mesh and needs
very small computational work. By using the proposed implementing technique,
the multigrid method can really arrive the asymptotically optimal computational
complexity which is almost independent of the nonlinearity of the GPE.

An outline of the paper goes as follows. In Section 2, we introduce finite element
method for the ground state solution of BEC, i.e. non-dimensionalized GPE (1).
A type of one correction step is given in Sections 3. In Section 4, we propose
an efficient implementing technique for the nonlinear eigenvalue problem included
in the one correction step. A type of multigrid algorithm for solving the non-
dimensionalized GPE by the finite element method will be stated in Section 5.
Three numerical examples are provided in Section 6 to validate the efficiency of the
proposed numerical method in this paper. Some concluding remarks are given in
the last section.

2. Finite element method for GPE problem

This section is devoted to introducing some notation and finite element method
for the GPE (1). The letter C (with or without subscripts) denotes a generic positive
constant which may be different at its different occurrences. For convenience, the
symbols ., & and ≈ will be used in this paper. That x1 . y1, x2 & y2 and x3 ≈ y3,
mean that x1 ≤ C1y1, x2 ≥ c2y2 and c3x3 ≤ y3 ≤ C3x3 for some constants C1, c2, c3
and C3 that are independent of mesh sizes (see, e.g., [28]). The standard notation
for the Sobolev spaces W s,p(Ω) and their associated norms ∥ · ∥s,p,Ω and seminorms
| · |s,p,Ω (see, e.g., [1]) will be used. For p = 2, we denote Hs(Ω) = W s,2(Ω) and
H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}, where v|∂Ω = 0 is in the sense of trace and
∥ · ∥s,Ω = ∥ · ∥s,2,Ω. In this paper, we set V = H1

0 (Ω) and use ∥ · ∥s to denote ∥ · ∥s,Ω
for simplicity.

For the aim of finite element discretization, we define the corresponding weak
form for (1) as follows: Find (λ, u) ∈ R× V such that b(u, u) = 1 and

(2) a(u, v) = λb(u, v), ∀v ∈ V,

where

a(u, v) :=

∫
Ω

(
∇u∇v +Wuv + ζ|u|2uv

)
dΩ, b(u, v) :=

∫
Ω

uvdΩ.

Now, let us define the finite element method [7, 11] for the problem (2). First we
generate a shape-regular decomposition of the computing domain Ω ⊂ Rd (d = 2, 3)
into triangles or rectangles for d = 2 (tetrahedrons or hexahedrons for d = 3). The
diameter of a cell K ∈ Th is denoted by hK and define h as h := maxK∈Th

hK . Then
the corresponding linear finite element space Vh ⊂ V can be built on the mesh Th.
We assume that Vh ⊂ V is a family of finite-dimensional spaces that satisfy the
following assumption:

(3) lim
h→0

inf
vh∈Vh

∥w − vh∥1 = 0, ∀w ∈ V.

The standard finite element method for (2) is to solve the following eigenvalue
problem: Find (λ̄h, ūh) ∈ R× Vh such that b(ūh, ūh) = 1 and

(4) a(ūh, vh) = λ̄hb(ūh, vh), ∀vh ∈ Vh.


