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STRONG CONVERGENCE AND STABILITY OF THE

SEMI-TAMED AND TAMED EULER SCHEMES FOR

STOCHASTIC DIFFERENTIAL EQUATIONS WITH JUMPS

UNDER NON-GLOBAL LIPSCHITZ CONDITION

ANTOINE TAMBUE AND JEAN DANIEL MUKAM

Abstract. We consider the explicit numerical approximations of stochastic differential equations

(SDEs) driven by Brownian process and Poisson jump. It is well known that under non-global

Lipschitz condition, Euler Explicit method fails to converge strongly to the exact solution of such
SDEs without jumps, while implicit Euler method converges but requires much computational

efforts. We investigate the strong convergence, the linear and nonlinear exponential stabilities

of tamed Euler and semi-tamed methods for stochastic differential equation driven by Brownian
process and Poisson jumps, both in compensated and non compensated forms. We prove that

under non-global Lipschitz condition and superlinearly growing drift term, these schemes converge
strongly with the standard one-half order. Numerical simulations to substain the theoretical results

are provided.
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1. Introduction

In this work, we consider jump-diffusion Itô’s stochastic differential equations
(SDEs) of the form in the interval [0, T ]

dX(t) = f(X(t−))dt+ g(X(t−))dW (t) + h(X(t−))dN(t), X(0) = X0.(1)

Here W (t) is a m-dimensional Brownian motion, f : Rd −→ Rd, d ∈ N satisfies the
one-sided Lipschitz condition and the polynomial growth condition, the functions
g : Rd −→ Rd×m and h : Rd −→ Rd satisfy the globally Lipschitz, and N(t) is a one
dimensional Poisson process with parameter λ. Extension to vector-valued jumps
with independent entries is straightforward. The one-sided Lipschitz function f
can be decomposed as f = u + v, where the function u : Rd −→ Rd is the global
Lipschitz continuous part and v : Rd −→ Rd is the non-global Lipschitz continuous
part, see e.g. [25]. Using this decomposition, we can rewrite the jump-diffusion
SDEs (1) in the following equivalent form

X(t) =
(
u(X(t−) + v(X(t−))

)
dt+ g(X(t−))dW (t) + h(X(t−))dN(t).(2)

This decomposition will be used only for semi-tamed schemes. Equations of type
(1) arise in a range of scientific, engineering and financial applications [3, 1, 14].
Most of such equations do not have explicit solutions and therefore one requires
numerical schemes for their approximations. Their numerical analysis has been
studied in [6, 24, 5, 19] with implicit and explicit schemes where strong and weak
convergence have been investigated. The implementation of implicit schemes re-
quires significantly more computational effort than the explicit Euler-type approx-
imations as Newton method is usually required to solve nonlinear systems at each
time iteration in implicit schemes. The standard explicit method for approximating
SDEs of type (1) is the Euler-Maruyama method [19]. Recently it has been proved
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(see [13, 11]) that the Euler-Maruyama method often fails to converge strongly to
the exact solution of nonlinear SDEs of the form (1) without jump term when at
least one of the functions f and g grows superlinearly. To overcome this drawback
of the Euler-Maruyama method, numerical approximation, with computational cost
close to that of the Euler-Maruyama method and which converges strongly even
in the case the function f is superlinearly growing was first introduced in [12] and
strong convergence was investigated. Further investigations have been performed
in the litterature (see for example [21, 9, 25] and references therein), where in [21]
the time step ∆t in [12] is replaced by its power ∆tα, α ∈ (0, 1/2] in the denom-
inator of the taming drift term. Recently the work in [21] has been extended for
SDEs driven by compensated Levy noise in [2, 15]. The condition α ∈ (0, 1/2] is
key in the convergence proofs in [2, 21, 15], so the proofs cannot be extended for
α ∈ [1/2, 1]. Strong and weak convergences are not the only features of numerical
techniques. Stability is also a good feature as the information about time step size
for which does a particular numerical method replicate the stability properties of
the exact solution is valuable. The linear stability is an extension of the determin-
istic A-stability while exponential stability can guarantee that errors introduced in
one time step will decay exponentially in future time steps, exponential stability
also implies asymptotic stability [8]. By the Chebyshev inequality and the Borel–
Cantelli lemma, it is well known that exponential mean-square stability implies
almost sure stability [8]. The stability of classical implicit and explicit methods
for (1) are well understood [6, 8, 24]. Although the strong convergence of tamed
schemes with and without jump have been studied, a rigorous stability properties
have not yet been investigated to the best of our knowledge.

The aim of this paper is to study the strong convergence of tamed schemes driven
by Brownian process and Poisson jump for α ∈ [1/2, 1], and to provide a rigorous
study of the linear and exponential stabilities of semi-tamed and tamed schemes for
α ∈ [0, 1]. Following closely the breakthrough idea in [12], we provide the strong
convergence of the tamed schemes and the corresponding semi tamed schemes both
in compensated and non compensated forms for α ∈ [1/2, 1]. The extensions are
not straightforward as several technical lemmas are needed. Numerical experiments
show that the semi-tamed works better than the tamed and compensated tamed
schemes. Numerical results also show that the tamed and the compensated tamed
Euler scheme have good stability behavior when α approaches 1. Therefore, our
tamed schemes with α ∈ [1/2, 1] have better stability property than the tamed
schemes presented in [2] for α ∈ (0, 1/2].

The paper is organized as follows. Section 2 presents the classical result of
existence and uniqueness of the solution X of (1). The compensated and non
compensated tamed schemes and semi-tamed scheme are presented in Section 3
along with their strong convergences. The linear stability of the schemes is provided
in Section 4 while the nonlinear exponential stability is provided in Section 5. We
end in Section 6 by providing some numerical simulations.

2. Notations, assumptions and well posedness

Throughout this work, (Ω,F ,P) denotes a complete probability space with a
filtration (Ft)t≥0. For all x, y ∈ Rd, we denote by 〈x, y〉 = x1y1 +x2y2 + · · ·+xdyd,

‖x‖ = 〈x, x〉1/2, ‖A‖ = sup
x∈Rd,‖x‖≤1

‖Ax‖ for allA ∈ Rm×d. a∨b represents max{a, b}.

We use also the following convention :
∑n
i=u = 0 for u > n.

We first ensure that SDEs (1) is well-posed. The following assumption is needed.


