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USING p-REFINEMENT TO INCREASE BOUNDARY
DERIVATIVE CONVERGENCE RATES

DAVID WELLS AND JEFFREY BANKS

Abstract. Many important physical problems, such as fluid structure interaction or conjugate
heat transfer, require numerical methods that compute boundary derivatives or fluxes to high ac-
curacy. This paper proposes a novel approach to calculating accurate approximations of boundary
derivatives of elliptic problems. We describe a new continuous finite element method based on
p-refinement of cells adjacent to the boundary that increases the local degree of the approxima-
tion. We prove that the order of the approximation on the p-refined cells is, in 1D, determined
by the rate of convergence at the mesh vertex connecting the higher and lower degree cells and
that this approach can be extended, in a restricted setting, to 2D problems. The proven conver-
gence rates are numerically verified by a series of experiments in both 1D and 2D. Finally, we
demonstrate, with additional numerical experiments, that the p-refinement method works in more
general geometries.
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1. Introduction

Simulation of many important physical problems, such as fluid structure interac-
tion and conjugate heat transfer, requires numerical methods that compute bound-
ary derivatives or fluxes to high accuracy. In some circumstances the only desired
result of a calculation is a quantity derived from the boundary derivatives, such as
a flux or stress: this problem has long been recognized as one of importance, and
a variety of methods (see, e.g., [12] (16, 28]) have been proposed that allow recon-
struction of an accurate boundary flux from less accurate interior data. Accurate
boundary derivatives are also required for some numerical boundary conditions.
For example, in [23] the authors presented a new discrete boundary condition for
a fluid-structure interaction problem based on matching accelerations, instead of
velocities, and obtained a traction boundary condition involving second derivatives
of the fluid velocity. This boundary condition was the key ingredient in a new
partitioned algorithm that was high-order, partitioned, and stable without subiter-
ations. While standard in the finite difference community (see, e.g., [9] 23]) these
equations, usually called compatibility boundary conditions, are not commonly used
in finite element methods, though they have appeared in some recent work [g].

A variety of algorithms have been proposed for calculating higher order derivative
values from lower order data calculated by a finite element method (see, e.g., [11, 17
28, 29, [30]): most of these algorithms rely on data post-processing, where one uses
least squares or other fitting procedure to fit a higher-degree polynomial through
known superconvergence points, as discussed in [3]. Another class of methods relies
on the application of high-order finite difference stencils to data derived on either
a uniform or quasi-uniform grid [I9]. A common feature of several postprocessing
techniques is that they require a grid satisfying some smoothness condition: without
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FIGURE 1. Two different implementations of p-refinement for
boundary cells adjacent to interior bilinear cells, where the finite
element spaces are chosen as nodal interpolants. The diagram on
the left is of @' elements adjacent to @* elements: the degrees of
freedom with support points along the two common faces would
ordinarily be constrained in a way that makes the solution continu-
ous. The scheme proposed in Section [3| uses a similar procedure to
constrain all such nonnormal degrees of freedom on each boundary
cell, effectively reducing the local approximation space to tensor
products of P!(x) and P*(y). Since the degree of the approxima-
tion in the normal direction determines the derivative convergence
rates, one could obtain the same effect by adding degrees of free-
dom corresponding to normal derivatives on the boundary instead
of doing Lagrange p-refinement.

such a condition, the error in the solution may be dominated by pollution error from
grid irregularities; see Chapter 4 of [3] for additional information on the impact
of grid regularity. In particular, of the three most common versions of the finite
element method (h-refinement based, p-refinement based, and hp-refinement based)
these postprocessing methods are almost always based on estimates from the h-
refinement version.

This paper proposes a novel alternative to current techniques. We present a
boundary cell p-refinement (i.e., locally increasing the degree of the approximation
space) strategy to improve the accuracy of boundary derivatives instead of post-
processing the solution. The numerical experiments in Section [4] use Lagrange p-
refinement to increase the local approximation degree: a possible alternative to this
is to add degrees of freedom corresponding to normal derivatives on the boundary.
This p-refinement results in higher rates of convergence in the normal derivatives
along the boundary. The theoretical results are based on the two-dimensional linear
convection-diffusion-reaction problem

(1) —Au+b-Vutcu=Ff

with homogeneous Dirichlet boundary conditions in y, periodic boundary conditions
in x, normalized viscosity, constant advection velocity l;, constant reaction rate
¢ > 0 (which is the standard well-posedness assumption; see Lemma 5.1 in [26] or
Chapters 3 and 4 of [24] for further discussion and justification), and forcing f.



