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Abstract. In this paper, the distributed Lagrange multiplier-fictitious domain (DLM/FD) fi-

nite element method is studied for a type of steady state Stokes interface problems with jump
coefficients, and its well-posedness, stability and optimal convergence properties are analyzed by

proving an inf-sup condition for a nested saddle-point problem that is induced by both Stokes e-

quations and DLM/FD method in regard to Stokes variables (velocity and pressure) and Lagrange
multipliers. Numerical experiments validate the obtained convergence theorem of DLM/FD finite

element method for Stokes interface problems with respect to different jump ratios.
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1. Introduction

Physicists and engineers use two phase flows to model a wide range of natural
phenomena. One such application is a Stokes flow with jump in the viscosity across
an interface. This can lead to kinks in the velocity field or discontinuities in pressure
at the interface. Using standard finite element methods to capture the true nature
of the solution near the interface presents a number of challenges. One method for
handling an interface problem is to create a mesh which conforms to the interface
[19]. If the interface changes with time, the mesh must be redrawn at each time
step to conform with the moving interface. The Arbitrary Lagrangian-Eulerian
method [15, 8] is able to adapt the mesh to small movements or changes in the
interface, but larger movements or deformations of the interface require that the
mesh be redrawn for the whole domain or part of the domain. However, it could
be very complicated, time consuming, and less accurate. Furthermore, the transfer
of solutions from the degenerated mesh to the new mesh may introduce artificial
diffusions, causing loss of accuracy.

Therefore, methods which allow each sub-domain to extend beyond the interface
have become increasingly popular. The extended finite element (XFEM) [9, 18]
method allows for a mesh which does not conform to the interface. In the XFEM,
the interface passes through elements. However, if the ratio of the areas or volumes
on either side of the interface becomes too large in any one element, the system
can become ill-conditioned and lead to breakdown problems with iterative linear
solvers. More recently, the cut finite element method [14, 17] was developed to
overcome this problem with the XFEM.

Fictitious domain methods were first developed to handle partial differential
equations in a complex geometry [16, 24, 25, 20, 21, 23]. The idea behind the
fictitious domain method is to extend the problem from a complicated domain to
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a larger, simpler domain where the problem can be solved more efficiently. When
finite element method is used, this allows for a simpler, more regular mesh. In
addition, the domain in which both the fluid and fictitious fluid are filled and its
mesh are time independent even when the original fluid domain is time dependent.

Lagrange multipliers defined on the actual boundary were later added to im-
plement the genuine boundary conditions [12, 13]. These boundary supported
Lagrange multiplier based methods that were first developed for linear elliptic
problems were later adapted to non-linear time dependent problems such as the
Navier-Stokes equations. The distributed Lagrange multiplier fictitious domain
(DLM/FD) method was developed for flows around rigid bodies and the particulate
flow problem [10, 11]. In [28] the DLM/FD method is applied to fluid/flexible-body
interactions, and a decoupled scheme is developed to solve for the fluid, solid, and
Lagrange multiplier terms separately. While some interesting numerical results are
provided in those papers, no theoretical analysis is given for DLM/FD finite elemen-
t method until recently, this method is analyzed for the elliptic interface problem
[1, 5] and the parabolic interface problem with a moving interface [27], where, the
well-posedness and convergence theorems of the DLM/FD method are proved for
those type of interface problems.

Most recently, the DLM/FD method is applied to fluid structure interaction
(FSI) problems involving an incompressible viscous-hyperelastic solid [4]. Its sta-
tionary case which is defined at each discrete time step is analyzed and an optimal
convergence theorem is obtained. In this setting the solid material exhibits both
solid and fluid-like properties, with its Cauchy stress tensor given by σs = σfs +σss ,
the sum of a fluid-like part and an elastic part. Thus the influence of fictitious fluid
to the structure equation is completely removed from the DLM/FD formulation.
Such a specific choice of structure material significantly simplifies the DLM/FD
formulation, which is, however, not for a general case of FSI problems.

In this paper, we will take DLM/FD method and apply it to the Stokes interface
problem first, where we have a domain Ω which is divided into two sub-domains Ω1

and Ω2 with a jump in the viscosity term across the interface Γ. The idea behind
the fictitious domain method is to create two non-matching meshes. A background
mesh is created over the entire domain Ω. A second mesh is generated in the sub-
domain Ω2 on one side of the interface. The mesh for Ω2 then sits on top of the
background mesh. The fluid in Ω1 is extended into the entire domain Ω and then a
distributed Lagrange multiplier (physically a pseudo body force) is used to enforce
the fictitious fluid to satisfy the constraint of the structure motion in Ω2.

Note that the DLM/FD method for the Stokes interface problem results one
nested saddle-point problem, where the inner saddle-point problem arises from
Stokes equations, and the outer saddle-point problem is induced by the DLM/FD
method itself regarding Lagrange multiplier and Stokes variables. It is challenging
how to accurately analyze the well-posedness, stability and optimal convergence
properties for such a nested saddle-point structure based on the Babuška–Brezzi’s
theory [2, 6]. In this paper, we will develop a new analysis tool to tackle this
problem. In fact, when analyzing the DLM/FD method for the Stokes interface
problem, we require that the viscosity of the fluid in Ω1 be less than the viscosity of
the fictitious fluid in Ω2. We are then able to prove that our DLM/FD formulation is
well posed at both the continuous and discrete levels, and derive an optimal error


