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CONFORMING HARMONIC FINITE ELEMENTS ON THE

HSIEH-CLOUGH-TOCHER SPLIT OF A TRIANGLE

TATYANA SOROKINA AND SHANGYOU ZHANG

Abstract. We construct a family of conforming piecewise harmonic finite elements on triangu-
lations. Because the dimension of harmonic polynomial spaces of degree ≤ k is much smaller
than the one of the full polynomial space, the triangles in the partition must be refined in or-
der to achieve optimal order of approximation power. We use the Hsieh-Clough-Tocher split: the
barycenter of each original triangle is connected to its three vertices. Depending on the polynomial
degree k, the original triangles have some minor restrictions which can be easily fulfilled by small
perturbations of some vertices of the original triangulation. The optimal order of convergence is
proved for the conforming harmonic finite elements, and confirmed by numerical computations.
Numerical comparisons with the standard finite elements are presented, showing advantages and
disadvantages of the harmonic finite element method.
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1. Introduction

Standard finite element methods use the full space Pk of polynomials of total
degree ≤ k, or its enrichment by the so-called bubble functions, on each element
(e.g. triangle or tetrahedron) for solving partial differential equations. That is, to
reach the optimal order of approximation, the traditional finite element space must
contain the full space Pk locally, cf. [2, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17].

Instead of using the full polynomial space Pk, in this work we use the harmonic
polynomials Pk,harm to construct conforming finite elements of optimal order for
approximating only harmonic solutions. A harmonic polynomial p in two variables
is a harmonic function, i.e., ∆p = pxx + pyy = 0. For each k > 0, there are only
two harmonic polynomials of exact degree k in two variables. They are the real
and the imaginary part of the analytic polynomial zk = (x + iy)k. The dimension
of Pk,harm is 2k + 1 as opposite to (k + 1)(k + 2)/2 for the dimension of Pk. But
the order of convergence of the corresponding finite elements is the same.

We solve the following boundary value problem that has a harmonic solution:

−∆u = 0, in Ω,(1)

u = f, on ∂Ω,

where Ω is a bounded polygonal domain in R
2. If the equation (1) has a non-zero

function g on the right-hand side, i.e., −∆u = g, then the Fourier transform method
can be used to find a solution u1 such that −∆u1 = g without any boundary con-
dition. Next the problem is reduced to a homogeneous problem with the boundary
condition f in (1) replaced by f −u1. The solution to the original problem is given
by u+ u1.

The projection of Pk,harm on a line in R
2 is the full space of univariate polynomials

of degree ≤ k. Thus, to construct a harmonic finite element, we need k+1 degrees
of freedom on each edge in the triangulation in order to have a continuous finite
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element space (conforming finite element). This would lead at least 3k degrees of
freedom in each triangle, see Fig. 1. But the dimension of Pk,harm is only 2k + 1.
Thus, to construct 2D conforming harmonic finite elements on a triangulation, one
has to split the original triangles. In this work, we construct Pk,harm conforming
finite elements on Hsieh-Clough-Tocher (H-C-T) refinements of triangulations. An
H-C-T refinement is obtained by connecting the barycenter of each triangle to its
three vertices. Thus, each macro-triangle in the original triangulation is split into
three subtriangles, and we have to work with three harmonic polynomials on one
H-C-T macro-triangle. There are 3(2k + 1) = 6k + 3 polynomial coefficients to be
determined. For the continuity along three internal edges, we impose 3(k+1)−1 =
3k+2 linear equations. By specifying the nodal values on the boundary and at the
barycenter we obtain 3k+1 equations. The total number of equations, 3k+2+3k+1,
is equal to the number of polynomial coefficients to be determined.
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Figure 1. In K, • denotes a degree of freedom of P5,harm finite
element; ◦ denotes a continuity constraints.

However, these equations may not have (unique) solutions. We show that, in
general, this depends on the geometry of macro-triangles. In particular, for k = 2,
there are no geometric constraints. For k = 3, only isosceles triangles are not al-
lowed. For each k afterward, there is an an additional restriction that a certain
polynomial function of the three angles does not vanish. Nevertheless, the prohib-
ited combinations of the angles form a zero measure subset of the domain of the
angles. So, in computation, we simply perturb one of the three vertices of a triangle
if the computer fails to generate basis functions on this macro-triangle.

We prove a special case of the Bramble-Hilbert lemma [3] for approximating
harmonic functions by harmonic polynomials. Using the lemma, we show that the
harmonic finite elements converge at the optimal order, when solving (1). In the last
section, we numerically test the harmonic finite elements of degree 2 to 6, confirming
the theoretical results. In addition, numerical comparisons with the standard finite
elements are presented. In an earlier work [12], we constructed a P2,harm conforming
finite element on macro-rectangles, and a P2,harm nonconforming finite element on
general non-refined triangulations.

2. Definition of harmonic finite elements

Let Mh = ∪K∈Th
K be a quasi-uniform triangulation of size h on the polygonal

domain Ω ⊂ R
2. Depending on the harmonic polynomial degree k, cf. Theorem

2.1 below, we may need to perturb some internal vertices a little to form a new
triangulation M̃h in the computation. Each triangle K in M̃h is subdivided into


