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ANALYSIS OF A SECOND-ORDER DECOUPLED

TIME-STEPPING SCHEME FOR TRANSIENT

VISCOELASTIC FLOW

S. S. RAVINDRAN

Abstract. In this paper, we propose and analyze a decoupled second order backward
difference formula (BDF2) time-stepping algorithm for solving transient viscoelastic fluid
flow. The spatial discretization is based on continuous Galerkin finite element approxima-
tion for the velocity and pressure, and discontinuous Galerkin finite element approximation
for the viscoelastic stress tensor. To obtain a non-iterative decoupled algorithm from the
fully discrete nonlinear system, we employ a second order extrapolation in time to the
nonlinear terms. The algorithm requires the solution of one Navier-Stokes problem and
one constitutive equation per time step. For mesh size h and temporal step size ∆t suf-
ficiently small satisfying ∆t ≤ Ch

d/4, a priori error estimates in terms of ∆t and h are
derived. Numerical tests are presented that illustrates the accuracy and stability of the
algorithm.
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1. Introduction

Time accurate computation of viscoelastic flows are important in many
engineering applications involving non-Newtonian fluid mechanics, see [13,
17, 21]. The Oldroyd-B model is one of the simplest constitutive models ca-
pable of describing the viscoelastic behavior of flows in which the extra stress
tensor is defined by a hyperbolic partial differential equation. The challenges
posed by the hyperbolic character of the equation for the extra stress tensor
such as spurious oscillations warrants care in discretizing this equation. For
the steady state problem, a discontinuous Galerkin (DG) finite element ap-
proximation of the constitutive equation was proposed and analyzed in [2].
In [16], a decoupled algorithm was analyzed for efficient implementation of
the scheme discussed in [2]. In [20], a Streamline Upwind Petrov Galerkin
(SUPG) approximation was employed to discretize the constitutive equation
and an error analysis was presented. For the unsteady problem, a DG dis-
cretization based approximation for the constitutive equation in inertialess
flow was studied in [3]. In [5], a fractional step θ method for time inte-
gration, combined with Taylor-Hood finite element and the SUPG spatial
discretization is presented. An implicit backward Euler time discretization
and continuous piecewise linear finite element in space for three field S-
tokes problem is discussed in [1]. In [22], unconditional error estimates of
finite element approximation to the viscoelastic flows, with DG discretiza-
tion for the constitutive equation is discussed. With first order implicit Euler
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temporal discretization and Taylor-Hood finite element approximation for
the velocity and pressure, they derived error estimates under the assump-
tion ∆t ≤ Ch3/2. In [9], a first order implicit Euler time discretization and
SUPG discretization for the constitutive equation was discussed and error
estimates were derived under the assumption that ∆t, ν < C hd/2, where
ν is the stabilization parameter of SUPG method. In [8], a Crank-Nicolson
time discretization scheme with a DG approximation for the constitutive
equation presented and error estimates were derived under the assumption
that ∆t ≤ Chd/4 .

In this paper, we propose and analyze a partitioned time stepping scheme
for the viscoelastic flow model based on second order backward Euler time
discretization. A second order in time extrapolation is used to effect a de-
coupling of the subphysics problems and to have the approximation deter-
mined at each time level by the solution of a single linear system. With
finite element approximation of the momentum equation and DG method
for the constitutive equation, we derive error estimates under the assumption
∆t ≤ Chd/4.

The rest of the paper is organized as follows: In Section 2, we intro-
duce the decoupled second-order backward difference time stepping scheme
assuming mixed finite element spatial discretizations for the time depen-
dent viscoelastic flow with constitutive equation stabilized by discontinuous
Galerkin (DG) approximation. In §3, we present the error estimates for the
fully discrete approximations. In §4, we present numerical results that illus-
trate the accuracy and efficiency of our algorithm. We close by providing
some remarks in §5.

2. The Oldroyd B model and decoupled time-stepping scheme

2.1. The Oldroyd B model. We consider a fluid flow in a bounded do-
main Ω in R

d, (d = 2, 3) with Lipschitzian boundary Γ. Let p denotes the
pressure, u the velocity, D(u) := 1

2(∇u+∇ut) the rate of strain tensor and
σtot the total stress tensor. An Oldroyd’s model of differential type with a
single relaxation time is obtained by setting σtot = −pI + σ + σN where σ
is the viscoelastic part of the extra stress tensor and σN = 2(1 − α)D(u) is
the Newtonian part, 1 < α ≤ 1. The Oldroyd-B model of viscoelastic flow
then is the following
(1)



∂tu− 2(1− α)

Re
∇ · D(u) + (u · ∇)u+

1

Re
∇p − ∇ · σ = f in Ω× (0, T ]

∇ · u = 0 in Ω× (0, T ]

∂tσ + (u · ∇)σ − 2α
λ D(u) + ga(σ,∇u) + σ

λ = 0 in Ω× (0, T ]

where the function f is the external force and the function ga is defined by

ga(σ,∇u) :=
1− a

2
(σ∇u+ (∇u)tσ)− 1 + a

2
((∇u)σ + σ(∇u)t) ,


