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ANALYSIS OF A GALERKIN FINITE ELEMENT METHOD

APPLIED TO A SINGULARLY PERTURBED

REACTION-DIFFUSION PROBLEM IN THREE DIMENSIONS

STEPHEN RUSSELL AND NIALL MADDEN

Abstract. We consider a linear singularly perturbed reaction-diffusion problem in three dimen-
sions and its numerical solution by a Galerkin finite element method with trilinear elements. The
problem is discretised on a Shishkin mesh with N intervals in each coordinate direction. Deriva-
tion of an error estimate for such a method is usually based on the (Shishkin) decomposition of
the solution into distinct layer components. Our contribution is to provide a careful and detailed
analysis of the trilinear interpolants of these components. From this analysis it is shown that, in
the usual energy norm the errors converge at a rate of O(N−2 + ε1/2N−1 lnN). This is validated
by numerical results.
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1. Introduction

Consider the following three-dimensional singularly perturbed reaction-diffusion
problem posed on the unit cube

Lu := −ε2∆u+ bu = f in Ω := (0, 1)3,

u = 0 on ∂Ω,
(1)

where the reaction coefficient b(x, y, z) ≥ 2β2, and β is a positive constant. In the
case of interest, the diffusion parameter, ε, can be arbitrarily small, i.e. 0 < ε� 1,
and so the problem (1) is singularly perturbed. As such, its solution typically
exhibits layers of width O(ε) along the boundary of the domain, ∂Ω.

It is well known that computing numerical solutions to singularly perturbed prob-
lems presents many difficulties. Solutions to these problems tend to be anisotropic
in nature on regions along the boundary or interior of the domain. Over the course
of the past five decades there have been many advances in devising specialised nu-
merical schemes to deal with this phenomenon. Many of these schemes fall into the
category of “fitted mesh” methods, where a standard discretisation is applied on a
specially designed non-uniform mesh.

The idea of using non-uniform meshes to solve singularly perturbed problems
was first introduced in 1969 by Bakhvalov [4]. However, it wasn’t until the early
1990s, with the introduction of the piecewise uniform mesh of Shishkin [19, 20], that
fitted mesh methods gained major prominence in the literature. In particular, the
application of finite difference methods to the one- and two-dimensional analogues
of (1) is well understood, see, e.g., [7, 17].

Finite element methods (FEMs) for one- and two-dimensional singularly per-
turbed reaction-diffusion problems, discretised on Shishkin meshes, are also well
documented in the literature. In the one-dimensional setting, Sun and Stynes [22]
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prove almost optimal convergence using piecewise polynomial elements, see also [10,
Thm. 6.6]. In two dimensions, Li and Navon [8] provide the first numerical
analysis for a Galerkin FEM applied to a singularly perturbed reaction-diffusion
problem. They prove almost second-order convergence in the L2-norm. Using
piecewise polynomial elements of order k, and quantifying the error in the energy
norm, Apel [3] proves convergence of O(N−k−1 + ε1/2N−k(lnN)k+1). Using piece-
wise bilinear elements, Liu et al. [11] prove convergence in the energy norm of
O(N−2 + ε1/2N−1 lnN). In that same paper, the authors provide the first full
numerical analysis of a sparse grid FEM applied to a singularly perturbed problem.
For a two-scale sparse grid method applied to a reaction-diffusion problem they
prove that the method converges at the same rate as the standard Galerkin FEM.
Madden and Russell [15]. extend the results of [11] and prove convergence of a
multiscale sparse grid FEM applied to the same problem.

The analysis of three-dimensional singularly perturbed reaction-diffusion prob-
lems has received, comparatively, little attention. The work of most relevance to
this paper is that of Shishkin and Shishkina [21], which provides a valuable solution
decomposition in three dimensions. Crucial bounds on the derivatives of each of
the solution decomposition components are also given. Chadha and Kopteva [5]
provide maximum norm a posteriori error estimates for a finite difference method
applied to a semi-linear reaction-diffusion problem in three dimensions. We also
make note of the work of Lopez and co-authors [12, 13, 14].

The numerical solution of three dimensional problems is computationally de-
manding, which motivates the use of sparse grid techniques, such as those referred
to above. In particular, the authors have devised and analysed a two-scale sparse
grid method for (1) [18]. However, that analysis establishes the difference between
the sparse grid and standard Galerkin solutions, so, for completeness, a full analysis
of the latter method is required; this paper provides that. It does so by employing a
Shishkin decomposition of the solution into distinct layer components, established
by Shishkin and Shishkina [21]. We then provide a careful and detailed analysis of
the trilinear interpolants of these components. From this, the numerical analysis
of the method follows. It should be noted that the interpolation results given here
also form the basis for the analysis of other techniques, such as the balanced norm
method of Lin and Stynes [9] and the FOSLS-type method of Adler et al. [1].

This paper is organised as follows. In Section 2.1 we present a canonical example
of a solution to (1), which motivates a three-dimensional piecewise uniform mesh.
The Shishkin decomposition is presented in Section 2.2, and standard bounds on
the components are reported. The heart of this paper is in Section 3, where we give
a detailed analysis of the decomposition components in the energy norm. The FEM
is given in Section 4, and the error estimate is readily deduced from the preceding
interpolation analysis. Numerical results, presented in Section 5 verify that the
theoretical results are sharp.

Notation. We use the following standard notation for function spaces and norms
(see, e.g., [6]):

• let Cp(Ω) be the space of all real-valued functions, v, defined on Ω, such
that v, and all its partial derivatives up to order p, are continuous on Ω;

• Cm,α(Ω) =
{

v ∈ Cm(Ω̄); ∀β, |β| = m, ∃Cβ , ∀x, y ∈ Ω, |∂βv(x)− ∂βv(y)|
≤ Cβ‖x− y‖α};


