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CS-MRI RECONSTRUCTION BASED ON THE CONSTRAINED

TGV-SHEARLET SCHEME

TINGTING WU1, ZHI-FENG PANG2,∗, YOUGUO WANG1, 3, AND YU-FEI YANG4

Abstract. This paper proposes a new constrained total generalized variation (TGV)-shearlet

model to the compressive sensing magnetic resonance imaging (MRI) reconstruction via the simple
parameter estimation scheme. Due to the non-smooth term included in the proposed model, we
employ the alternating direction method of multipliers (ADMM) scheme to split the original
problem into some easily solvable subproblems in order to use the convenient soft thresholding
operator and the fast Fourier transformation (FFT). Since the proposed numerical algorithm
belongs to the framework of the classic ADMM, the convergence can be kept. Experimental
results demonstrate that the proposed method outperforms the state-of-the-art unconstrained
reconstruction methods in removing artifacts and achieves lower reconstruction errors on the
tested dataset.
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1. Introduction

Magnetic resonance imaging (MRI) is commonly used in radiology to visualize
the internal structure and function of the body by noninvasive and nonionizing
means. However, the widespread use of MRI is hindered by its intrinsic slow data
acquisition process. So how to speed up the scanning time has been the key in
the MRI research community. Recently, compressive sensing (CS) [3] has shown
great potential in speeding up MRI by under-sampling k-space data. In the mean-
time, reducing the acquired data which compromises with its diagnostic value may
result in degrading the image quality. Considering the above reasons, finding an
inversion algorithm with good practical performance in terms of image quality and
reconstruction speed is crucial in clinical applications.

Let u be an ideal image scaled in [0, 1] and set A = PF , where P is a selection
matrix and F is the Fourier transformation matrix. Accordingly, the undersampling
k-space data f involved in the sampling matrix A and the additive noise η can be
boiled down to

f = Au+ η.(1)

From the view of the numerical computation, reconstructing u from f is an ill-
posed problem since the operator A depends on imaging devices or data acquisi-
tion patterns, which usually leads to a large and ill-conditioned matrix. So some
variational-PDE based models have been proposed to overcome these drawbacks.

In order to improve the scanning time of the variational-PDE based models,
motivated by the compressed sensing (CS) theory, Lustig et al. [29] proposed an
unconstrained model to reconstruct CS-MRI images as follows:

(2) min
u

‖u‖TV + τ
∥∥Φ>u

∥∥
1
+

η

2
‖Au− f‖22,
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where ‖u‖TV = ‖∇u‖1 is the total variation [5, 7, 24, 35, 43, 48] (TV), Φ is the
wavelet transformation, the superscript > denotes (conjugate) transpose of matrix.
‖Φ>u‖1 is the `1-norm of the representation of u under the wavelet transformation
Φ, τ > 0 is a scalar which balances Φ sparsity and TV sparsity.

As we know, the TV-based regularization in the model (2) can handle few-views
problems in the MRI reconstruction, which has the advantage to preserve edges
when removing noises in homogeneous regions. However, it usually tends to cause
staircase-like artifacts [22, 26, 28, 32, 35] due to their nature of favoring piecewise
constant solutions. To alleviate the above drawbacks, the total generalized variation
(TGV) in [2] has attracted much interest in image science. On the other hand, the
continuous wavelet transformation of a distribution f decays rapidly near the points
where f is smooth, while it decays slowly near the irregular points. This property
allows the identification of the singular support of f . However, the continuous
wavelet transformation is unable to describe the geometry of the singularity set of
f and, in particular, to identify the wavefront set of a distribution [40]. Unlike
the traditional wavelets used in the second regularized term of (2) lacking the
ability to detect directionality, the shearlets provide a multidirectional as well as
a multiscale decomposition for multi-dimension signals [17, 18]. There are two
main advantages of using shearlets regularization in reconstruction: one is that
shearlets allow for a lower redundant sparse tight frame representation than other
related multiresolution representations, while still offering shift invariance and a
directional analysis; another is that the shearlet representation can be used to
decompose the space L2(Ω) of images into a sequence of spaces, while we apply
the soft thresholding operator conveniently to numerical algorithm. Obviously,
shearlets are better candidates than wavelets, as shearlets have essentially optimal
approximation errors for images that contain edges apart from discontinuities along
curves. So following these observations, Guo et al. [19] coupled the TGV with
the shearlet transformation to reconstruct high quality images from incomplete
compressive sensing measurements as

min
u

TGV2
α(u) + β

N∑

j=1

‖SHj(u)‖1 +
ν

2
‖Au− f‖22,(3)

where SHj(u) is the jth subband of the shearlet transformation of u; β > 0 bal-
ances the shearlet transformation sparsity and the TGV sparsity; ν > 0 is the
regularization parameter.

In the model (3), the key is how to balance two parameters β and ν. In form, an
improperly large weight for the data fidelity term results in serious residual artifacts,
whereas an improperly small weight results in damaged edges and fine structures
[8]. To overcome these drawbacks, it needs to turn to the following constrained
optimization model as

min
u

TGV2
α(u) + β

N∑
j=1

‖SHj(u)‖1
s.t. ‖Au− f‖2 ≤ σ,

(4)

where σ implies some prior information of noise. Compared with unconstrained
model (3), the model (4) can estimate the noise level σ more easily than finding
a suitable parameter ν. These two models are equivalent in nature when choos-
ing suitable penalty parameter ν. In fact, this equivalency transformation has
been successfully applied to imaging and sparsity tasks [37, 41, 42, 45] for the


