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A FINITE DIFFERENCE METHOD FOR STOCHASTIC

NONLINEAR SECOND-ORDER BOUNDARY-VALUE PROBLEMS

DRIVEN BY ADDITIVE NOISES

MAHBOUB BACCOUCH

Abstract. In this paper, we present a finite difference method for stochastic nonlinear second-

order boundary-value problems (BVPs) driven by additive noises. We first approximate the white
noise process with its piecewise constant approximation to obtain an approximate stochastic BVP.
The solution to the new BVP is shown to converge to the solution of the original BVP at O(h)
in the mean-square sense. The approximate BVP is shown to have certain regularity properties

which are not true in general for the solution to the original stochastic BVP. The standard finite
difference method for deterministic BVPs is then applied to approximate the solution of the
new stochastic BVP. Convergence analysis is presented for the numerical solution based on the

standard finite difference method. We prove that the finite difference solution converges to the
solution to the original stochastic BVP at O(h) in the mean-square sense. Finally, we perform
several numerical examples to validate the theoretical results.
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white noise, mean-square convergence, order of convergence.

1. Introduction

In this paper, we investigate the convergence properties of a finite difference
method applied to scalar stochastic nonlinear second-order boundary-value prob-
lems (BVPs) driven by additive white noises. More specifically, we are interested
in the stochastic BVP (SBVP)

(1) u′′ = f(x, u) + g(x)Ẇ (x), x ∈ (a, b), u(a) = α, u(b) = β,

where f : [a, b] × R → R and g : [a, b] → R are given functions. Here, α and

β are deterministic real constants and Ẇ is the white noise. The white noise is a
generalized function or a distribution and it can be written informally as Ẇ (x) =
dW (x)

dx in the sense of distribution. Here, W (x) is the one-dimensional standard
Brownian motion (or Wiener process) which is defined on a complete probability
space (Ω,F , P ) equipped with a filtration {Fx}a≤x≤b satisfying the usual conditions
(i.e., the filtration is right-continuous and contains all P -null sets in F) and carrying
a standard one-dimensional Brownian motion W . We note that the stochastic
process W = W (x), x ∈ [a, b] has the following important properties:

(1) W (a) = 0 with probability one.
(2) The trajectories (or sample paths) x → W (x) are continuous for x ∈ [a, b].
(3) For every a ≤ x < y ≤ b, the incrementW (y)−W (x) is normally distributed

with mean 0 and variance y − x. Symbolically, we write W (y) −W (x) ∼
N (0, y − x).

(4) W (x) has independent increments i.e., for every partition a = x0 ≤ x1 <
· · · < xN = b, the increments ∆Wi = W (xi) − W (xi−1), i = 1, 2, . . . , N ,
are independent.
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Although Brownian paths are not differentiable pointwise, we may interpret their
derivative in a distributional sense to get a generalized stochastic process called
white noise Ẇ = dW

dx . The term ”white noise” arises from the spectral theory of
stationary random processes, according to which white noise has a ”flat” power
spectrum that is uniformly distributed over all frequencies (like white light). This
can be observed from the Fourier representation of Brownian motion.

In our analysis, we assume that the SBVP (1) has a unique solution. The existence
and uniqueness of the solution to SBVPs were established by Nualart and Pardoux
in [29, 30]. We further assume that the function g is continuous on [a, b] and satisfies
the uniform Lipschitz condition with Lipschitz constant Lg:

(2) |g(x)− g(y)| ≤ Lg |x− y| .
Finally, we assume that the nonlinear function f(x, u) satisfies the following condi-
tions

(1) f(x, u) and fu(x, u) are continuous functions on the set D = {(x, u) | x ∈
[a, b], u ∈ R},

(2) there exist constants K1 and K2 such that

0 < K1 ≤ fu(x, u) ≤ K2, for all (x, u) ∈ D.(3)

Using the Mean-Value Theorem, it follows that f satisfies the following uniform
Lipschitz condition on D in the variable u with uniform Lipschitz constant Lf = K2

(4) |f(x, u)− f(x, v)| ≤ Lf |u− v| , for all (x, u), (x, v) ∈ D = [a, b]× R.
We remark that (1) is a formal notation due to poor regularity of the white noise.
A solution to the SBVP (1) is defined in terms of integral equations. To define the
solution u, we first introduce a new variable v = u′. Then we convert (1) into the
system

u′ = v, v′ = f(x, u) + g(x)Ẇ (x), x ∈ (a, b), u(a) = α, u(b) = β.(5)

The stochastic process (u, v) ∈ R2 is a solution to (5) if (u, v) satisfies the integral
equations

u(x) = u(a) +

∫ x

a

v(y)dy, x ∈ (a, b),(6a)

v(x) = v(a) +

∫ x

a

f (y, u(y)) dy +

∫ x

a

g(y)dW (y), x ∈ (a, b),(6b)

with the boundary conditions u(a) = α and u(b) = β. The integral in (6a) and
the first integral in (6b) are pathwise Riemann integrals. However, the last in-
tegral in (6b) is an Itô stochastic integral. Since the Brownian paths are of un-
bounded variation on [a, x] for every x > a, the latter integral cannot be defined as
a Riemann-Stieltjes integral.

Stochastic differential equations (SDEs) are used to describe more realistic mod-
els. They provide suitable mathematical tools to model real-world problems with
uncertainties that may be originated from various sources such as side (initial and
boundary) conditions, geometry representation of the domain, and input param-
eters. Many areas of applications use SDEs including physics, biology, finance,
economics, insurance, signal processing and filtering, population dynamics, and
genetics; see for examples [17, 25, 31, 32, 33, 34, 38].

Unlike deterministic BVPs, there are very few SDEs with exact analytical solutions.
Therefore, numerical methods are usually necessary to approximate their solutions.


