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SOME NEW DEVELOPMENTS OF POLYNOMIAL PRESERVING

RECOVERY ON HEXAGON AND CHEVRON PATCHES

HAO PAN, ZHIMIN ZHANG, AND LEWEI ZHAO

Abstract. Polynomial Preserving Recovery (PPR) is a popular post-processing technique for
finite element methods. In this article, we propose and analyze an effective linear element PPR
on the equilateral triangular mesh. With the help of the discrete Green’s function, we prove

that, when using PPR to the linear element on a specially designed hexagon patch, the recovered

gradient can reach O(h4| lnh|
1
2 ) superconvergence rate for the two dimensional Poisson equation.

In addition, we apply PPR to the quadratic element on uniform triangulation of the Chevron

pattern with an application to the wave equation, which further verifies the superconvergence
theory.
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1. Introduction

In recent years, since the development of the high accuracy post-processing and
a posteriori error estimate ([1] and [2]), there has been growing interest in the su-
perconvergence and other kinds of high accuracy methods such as defect correction
and extrapolation. Finite element recovery techniques are post-processing methods
that reconstruct numerical approximations from finite element solutions to achieve
better results. We consider only C0 finite element methods, although generalization
to other finite element methods, such as non-conforming and discontinuous Galerkin
methods, are feasible. Let u be a solution of certain differential equation, and uh

be the finite element approximation of u. The goal of a recovery technique is to
construct Ghuh based on uh such that Ghuh is a better approximation of ∇u than
∇uh. Naturally, the mathematical background of recovery techniques is closely re-
lated to the finite element superconvergence theory, see, e.g., the monographs [3]
and [4].

Zienkiewicz and Zhu first introduced the gradient recovery method Supercon-
vergence Patch Recovery (SPR, ([5]) in 1992 based on a local discrete least-squares
fitting. Later, Zhang and Naga proposed an alternative strategy ([6]) called Poly-
nomial Preserving Recovery (PPR) to recover the gradient. Theoretical analysis
reveals that PPR has better superconvergence properties than SPR ([7]). It has
been implemented by commercial finite element software COMSOL Multiphysics as
a superconvergence tool. There have been further developments on applications of
PPR in numerical methods. For example, Guo and Yang ([8]) generalized the study
of PPR to high-frequency wave propagation in 2016. Wang etc.al establish the su-
perconvergence for Maxwell equations and combine with PPR that leads to global
superconvergence for recovered quantities in energy norms ([9]). Du and Zhang
study the superclosesness property of the linear Discontinous Galerkin finite ele-
ment method and its superconvergence behavior after post-processing by the PPR
([10]). Guo et al.generalized the idea of PPR to the general polygons, which only
uses the degrees of freedom and has the consistency on arbitrary polygonal meshes
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by the polynomial preserving property([11]). They prove the polynomial preserving
and boundedness properties of the generalized gradient recovery operator.

In practice, PPR is performed on an element patch ωz (around z) which is a union
of elements that covers all nodes needed for the construction of Ghuh(z). Different
mesh patterns and selection of patches result in different recovery. Some popular
mesh patterns include the regular pattern, the Chevron pattern, the Union-Jack
pattern, etc. ([6] and [7]). In general, PPR can attain h2 superconvergence rate
for the recovered gradient at an element vertex z for the linear element (Theorem
8.17 of [7]). In this article, we design a hexagon patch on equilateral triangulation

(Section 3.1) to reach a surprising superconvergence rate h4| lnh| 12 for the recovered
gradient from the linear element (Theorem 7). Standard approximation theory fails
to prove such a higher order superconvergence. In order to prove our theory, we use
the asymptotic error expansion in [12] and interior maximum norm estimates for the
discrete Green’s function in Section 3.2. Furthermore, an equal superconvergence
phenomenon is found on equilateral triangulation (Theorem 8). In addition, we
apply PPR to the quadratic element on the uniform triangulation of the Chevron
pattern, which further verifies the superconvergence stated in Theorem 3.1 in [6].
We also perform the quadratic PPR numerical experiments for a wave equation on
the Chevron pattern mesh.

An outline of this paper is as follows. We devote Section 2 to existed theory for
PPR. The general set up for the linear element PPR on the Hexagon patch is then
constructed in Section 3. Finally the applications of the PPR to the quadratic ele-
ment on the uniform triangulation of the Chevron pattern are presented in Section
4.

2. Some preliminaries of PPR

In this section, we introduce some basic knowledge of PPR in 2D. We consider
the following variational problem on a polygonal domain Ω : Find u ∈ H1

0 (Ω) such
that

(1) a(u, v) = f(v), ∀v ∈ H1
0 (Ω),

where

a(u, v) =

∫
Ω

[(A∇u+ bu) · ∇v + cuv].

We assume that all the coefficient functions are smooth, A is a 2×2 symmetric pos-
itive definite matrix, f(.) is a linear functional, and the bilinear form is continuous
and satisfies the inf-sup condition (8.3.14)-(8.3.15) of [7] on H1(Ω).

Let Th = {K} be a finite regular triangulation of Ω of width h with all its
boundary vertices on ∂Ω. Corresponding to Th, we define the following finite ele-
ment spaces:

Sh(Ω) = {vh ∈ C(Ωh) : vh is piecewise polynomial of degree≤ k on each K ∈ Th}
S0
h(Ω) = {v ∈ Sh : supp(v) ∈ Ωh}.

where Ωh = ∪{K ∈ Th}. Then the finite element approximation uh ∈ S0
h(Ω)

satisfies

(2) a(uh, v) = f(v), ∀v ∈ S0
h(Ωh).

To ensure the uniqueness of the finite element solution, we assume the discrete
inf-sup condition (8.3.17) of [7].

Given a node z, we select n ≥ (k + 2)(k + 3)/2 sampling points adjacent to z,
and fit a polynomial of degree k+ 1, in the least square sense, with values of uh at


