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MULTILEVEL FINITE VOLUME METHODS FOR 2D

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

J. K. DJOKO, H. H. GIDEY*, AND B. D. REDDY

Abstract. In this work, implicit and explicit multilevel finite volume methods have been con-
structed to solve the 2D Navier-Stokes equation with specified initial condition and boundary
conditions. The multilevel methods are applied to the pressure-correction projection method us-
ing space finite volume discretization. The convective term is approximated by a linear expression
that preserves the physical property of the continuous model. The stability analysis of the nu-
merical methods have been discussed thoroughly by making use of the energy method. Numerical
experiments exhibited to illustrate some differences between the new (multilevel) and conventional
(one-level) schemes.
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1. Introduction

Let Ω = (0, L1) × (0, L2) ⊆ R
2 be an open and bounded region in R

2 with
smooth boundary ∂Ω and points denoted by (x, y) ∈ Ω = Ω ∪ ∂Ω. Let 〈·, ·〉 denote
the L2(Ω) inner product of vectors or matrix fields on Ω, depending on the context;
i.e.,

〈u,u〉 =
∫

Ω

u · v dΩ,(1)

where u and v are arbitrary vectors on Ω. The associated L2-norm is denoted by
‖ · ‖ =

√
〈·, ·〉. The spatial velocity field of the fluid filling the region Ω is denoted

by u(x, y, t), where t ∈ [0, T ], T ∈ R+.
The Navier-Stokes equations governing the dynamics of the viscous incompress-

ible and homogeneous fluids is written in the generic form [1]

ut +B(u)u = −∇p+ ν∆u+ f, in Ω(2)

divu = 0,(3)

associated with the following boundary conditions and initial data:

u = 0, on ∂Ω(4)

u|t=0 = u0 in Ω,(5)

where B(u)u is the convective term, ν > 0 is the kinematic shear viscosity, p is a
pressure field arising from incompressibility constraint div u = 0 and f is applied
body force.
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Let H be the space of L2(Ω)-smooth vector fields tangent to the boundary ∂Ω
and denote by Hdiv the subspace of divergence-free vector fields:

H :=
{
u ∈ L2(Ω)2 : u(0, y, t) = u(L1, y, t) = u(x, 0, t) = u(x, L2, t) = 0,(6)

x ∈ [0, L1], y ∈ [0, L2]}(7)

Hdiv := {u ∈ H : div u = 0 }.(8)

In this study, we consider the standard form of the convective term, i.e, B(u)ηηη =
(u·∇)ηηη, for any smooth H1(Ω)-vector field ηηη, with associated pressure field denoted
by p. Using integration by parts, we obtain

〈B(u)ηηη1, ηηη2〉 = −〈ηηη1, B(u)ηηη2〉 − 〈divuηηη1, ηηη2〉+
∫

Γ

(uηηη1 · ηηη2)(u · n)dΓ,(9)

for arbitrary H1(Ω)-smooth vector fields ηηη1, ηηη2 on Ω.

〈B(u)ηηη1, ηηη2〉 = −〈ηηη1, B(u)ηηη2〉,u ∈ Hdiv.(10)

〈B(u)ηηη,ηηη〉 = 0, for any H1(Ω) smooth vector field ηηη,(11)

only holds if the velocity field is divergence-free; u ∈ Hdiv.
Integrating equation (3) over a control volume and converting the volume integral

to a surface integral gives
∫

Ω

div u dx dy =

∮

S

u · n dx dy = 0.(12)

This shows that the inflow must be equal to the outflow.

Our objective is to construct multilevel finite volume methods based on the
work in [2-4] to compute the numerical solution of (2)-(5). Multilevel methods
were introduced to improve calculation speed in the simulation of complex physical
phenomena while maintaining good accuracy [3-8]. We construct implicit and ex-
plicit finite volume methods based on the work of Appadu et al. [2] and Bousquet
et al. [4]. The schemes we construct are easy to implement and the convective term
B(u)u is approximated such that the discrete analogue of the property (11) holds.

Our work can also be seen as continuation of investigations started in [1] because
in a way we are concerned with the stability of the new schemes that should preserve
(11). The main difference with the former investigation is that we are dealing here
with multilevel scheme, hence stability analysis is more complex, even with the use
of a simpler technique (energy method). We do not discuss existence of solutions of
the schemes formulated because we are dealing with linear scheme (for the implicit
multilevel method) and explicit multilevel method. Hence solvability of the implicit
scheme is a consequence of Lax-Milgram’s result in the discrete setting.

The next section is devoted to space discretization and some properties that are
helpful to our study. In section 3, we are concerned with the multilevel discretization
and time stepping algorithm. In sections 4 and 5, we present the implicit and
explicit multilevel finite volume methods, respectively and analyse their stability. In
section 6, we present the numerical results obtained from the two multilevel methods
and these results are compared with the full one-level finite volume methods on the
fine mesh and coarse mesh. Concluding remarks and some open questions are
reported in section 7.


