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THE TIME HIGH-ORDER ENERGY-PRESERVING SCHEMES

FOR THE NONLOCAL BENJAMIN-ONO EQUATION

CHUNGUANG CHEN, DONG LIANG∗, AND SHUSEN XIE

Abstract. The new time high-order energy-preserving schemes are proposed for the nonlocal

Benjamin-Ono equation. We get the Hamiltonian system to the nonlocal model, and it is then
discretized by a Fourier pseudospectral method in space and the Hamiltonian boundary value

method (HBVM) in time. This approach has high order of convergence in time and conserves the

total mass and energy in discrete forms. We further develop a time second-order energy-preserving
scheme and a time fourth-order energy-preserving scheme for the nonlocal Benjamin-Ono equation.

Numerical experiments test the proposed schemes with a single solitary wave and the interaction

of two solitary waves. Results confirm the accuracy and conservation properties of the schemes.
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1. Introduction

Recently, there are more increasing interests in studying the problems of nonlocal
partial differential equations in physics, mechanics, biology, materials science, and
imaging science, etc. We consider the nonlocal Benjamin-Ono equation, which is a
nonlocal partial differential equation arising in the study of long internal gravitation
waves in deep stratified fluids and modelling the propagation of nonlinear dispersive
waves ([3, 12, 14]).

The nonlocal Benjamin-Ono equation describes the remarkable properties of non-
linear dispersive wave propagation, that they permit stable, localized waveform so-
lutions travelling at constant speeds, called solitary waves [11]. When two solitary
waves overtake each other, they emerge from the interaction without any changes
in shape and speed. James and Weideman [13] proposed a pseudospectral method
for the Benjamin-Ono equation by the Hilbert transform, which is a convolution,
reduces to a product under the spectral discretization. Boyd and Xu [9] compared
three pseudospectral methods based on the Fourier, radial basis and rational or-
thogonal basis functions for the Benjamin-Ono equation and obtained exponential
convergence in space. Thomee and Murthy [15] solved the Benjamin-Ono equation
by a finite difference approximations in space and the Crank-Nicolson approxima-
tion in time. This approach has the accuracy order O(h2 + ∆t2). Although the
spectral methods are commonly used to solve the Benjamin-Ono equation, they
do not conserve the physical invariants if the system is integrated in time by non-
conservative integrators such as the standard Runge-Kutta methods or multi-step
methods. As a result, dissipative errors will be introduced and the shapes and
speeds of solitary solutions will change in numerical simulations. Therefore, it is
very important and dificult to develop time high-order energy-preserving numerical
schemes to the nonlocal Benjamin-Ono equation.

Brugnano and Iavernaro et al [6, 7, 8] proposed a class of structure-conserved
method, namely the Hamiltonian boundary value methods (HBVMs) that yield
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the conservation for Hamiltonian invariants represented by polynomial functional
of arbitrarily high-degree. Moreover, the methods are shown to be symmetric,
precisely A-stable, and can have arbitrarily high-order accuracy. The methods have
been extensively applied to simulate Hamiltonian partial differential equations, such
as the semilinear wave equation [4], the nonlinear Schrödinger equation [2], the KdV
equation [5] and the modified KdV equation [16]. However, to our best knowledge,
the HBVMs have not been applied to approximate any nonlocal dispersive partial
differential equations, such as the nonlocal Benjamin-Ono equation.

In this paper, we develop time high-order energy-preserving schemes for the non-
local Benjamin-Ono equation. We first get the Hamiltonian system to the nonlocal
model of Benjamin-Ono equation. We then discretize the nonlocal Benjamin-Ono
equation in space by the Fourier pseudospectral method. We show that the result-
ing semi-discrete system can be written as a Hamiltonian system. We integrate
the corresponding discrete Hamiltonian system with the HBVM approach to ob-
tain a time second-order scheme and a time fourth-order scheme, both preserving
the mass and energy indiscrete forms. Numerical experiments are given to show
the preserving properties and convergence orders of the schemes and to show the
physical phenomenon of the interaction of solitary waves of the nonlocal models.

This paper is organized as follows. In Section 2, we present the nonlocal model
of Benjamin-Ono equation and derive out its Hamiltonian system. In Section 3,
we derive the Runge-Kutta formulation of the HBVMs. In Section 4, we introduce
the basic properties of the Fourier pseudospectral method and obtain the time
second-order and time fourth-order energy-preserving schemes. We show numerical
experiments in Section 5 and some conclusions are addressed in Section 6.

2. Nonlocal model of Benjamin-Ono equation and its Hamiltonian sys-
tem

Consider the nonlocal model of the Benjamin-Ono equation [15]

(1)

{
ut + uux −Huxx = 0, x ∈ [−L,L], t ∈ [0,+∞),

u(x, 0) = u0(x), x ∈ [−L,L],

with u(x+ 2L, t) = u(x, t) and H is the Hilbert transform defined by
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for the periodic function u(x). For details of the periodic Hilbert transform and
theoretical analysis of (1), we refer to [15] and the references therein. It can be
shown that the periodic problem (1) has many invariants, such as

M =
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udx,
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These invariants are usually referred as mass, momentum and energy, respectively.


