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TRANSIENT DYNAMICS OF BLOCK COORDINATE DESCENT

IN A VALLEY

MARTIN MOHLENKAMP, TODD R. YOUNG*, AND BALÁZS BÁRÁNY

Abstract. We investigate the transient dynamics of Block Coordinate Descent algorithms in
valleys of the optimization landscape. Iterates converge linearly to a vicinity of the valley floor
and then progress in a zig-zag fashion along the direction of the valley floor. When the valley sides
are symmetric, the contraction factor to a vicinity of the valley floor appears to be no worse than

1/8, but without symmetry the contraction factor can approach 1. Progress along the direction of
the valley floor is proportional to the gradient on the valley floor and inversely proportional to the
“narrowness” of the valley. We quantify narrowness using the eigenvalues of the Hessian on the

valley floor and give explicit formulas for certain cases. Progress also depends on the direction of
the valley with respect to the blocks of coordinates. When the valley sides are symmetric, we give
an explicit formula for this dependence and use it to show that in higher dimensions nearly all
directions give progress similar to the worst case direction. Finally, we observe that when starting

the algorithm, the ordering of blocks in the first few steps can be important, but show that a
greedy strategy with respect to objective function improvement can be a bad choice.
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1. Introduction

Consider the generic problem of trying to find minimum points of a non-negative,
differentiable objective function f : Rn → R+. The argument of f can be considered
as a column vector x, which can then be broken into blocks as x = (x1;x2; . . . ;xd).
Minimization with respect to a single block xi while holding the other blocks fixed
is often much easier than minimizing with respect to the full x. This suggests a
minimization algorithm: starting from an initial x,

loop: until some convergence criteria is met:
loop: through i = 1, . . . , d:

update: xi to minimize f with respect to xi.

We call the minimization with respect to one block of coordinates amicro-step and
one loop through i a pass. This algorithm is the simplest form of block coordinate
descent (BCD) (see e.g. [52, 23, 48, 2, 41, 53] and many textbooks). When the
blocks consist of single coordinates, BCD is called alternating coordinate [22] or
coordinate descent (CD) (e.g. [23, 30]).

Despite (or perhaps due to) their simplicity, BCD methods are widely used
and promising for many applications such as high-dimensional data analysis [30],
machine learning [36, 24], image processing [53] and others [15, 49]. In the context
of low rank tensor approximation problems, BCD is known as alternating least-
squares (ALS) (e.g. [38, 32, 3, 4, 50, 27, 29, 19, 20, 7, 16, 6, 18, 45, 51, 40, 17, 46]).
A micro-step of ALS reduces to a linear least squares problem and so is extremely
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Figure 1. Illustrations of the behavior of a coordinate descent
(CD) method in valleys in R2. The first panel shows iterations
along a straight diagonal valley far from any local minimum and
the valley floor is at an angle π/6 from the x-axis. In the second
panel iterations are shown near a local minimum point that is in a
diagonal valley that is π/4 from the coordinate directions. Contour
curves are shown in both panels. In both cases the trajectories zig-
zag slowly downhill along the valley floor.

efficient and precise. Overall, ALS is observed to converge rapidly in many cases.
In other cases, however, it exhibits long periods of very slow progress, in what is
informally called a swamp. Swamps can be classified as terminal or transient.
In a terminal swamp, the slow progress continues to a (local) minimum point. In a
transient swamp, progress eventually accelerates and the iterates exit the swamp.
Analysis of the causes of swamps can be broken into two questions:

(1) What features of a generic f can cause BCD algorithms to progress slowly?
(2) What aspects of the tensor approximation problem cause such features to

occur so frequently and strongly?

Narrow valleys (thin ridges in maximization problems) have been recognized as
a challenge for optimization algorithms for many years (see [34, 35, 42, 11, 14])
and one of the classical test functions for optimization, the Rosenbrock function
[42], has a minimum in a narrow valley that is diagonally oriented at the minimum.
Thus, narrow valleys are a natural candidate as a cause for swamps and answer for
Question 1. In [13] we developed a rudimentary quantitative theory for measuring
the effect of narrow valleys on algorithms, based on the gradient descent with
line search (GDLS) algorithm. For BCD methods, the orientation of the valley is
important. In Figure 1 we illustrate iterations of a CD method in transient and
terminal valleys in R2. Roughly speaking, the problem is that iterations of a BCD
method zig-zag slowly in a narrow valley. It is also clear that a valley will attract
a non-trivial open set of points under a BCD method.

For the tensor approximation problem, in [13] we found that nonhyperbolic sinks
and saddles can occur for certain parameters values and these cause swamps. For
nearby parameter values the weakly hyperbolic sinks and saddles create narrow val-
leys that also cause swamps. See Figure 2 for an illustration of such narrow valleys.


