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MODIFYING THE SPLIT-STEP θ-METHOD WITH

HARMONIC-MEAN TERM FOR STOCHASTIC DIFFERENTIAL

EQUATIONS

KAZEM NOURI, HASSAN RANJBAR AND JUAN CARLOS CORTÉS LÓPEZ

Abstract. In this paper, we design a class of general split-step methods for solving Itô sto-
chastic differential systems, in which the drift or deterministic increment function can be taken
from special ordinary differential equations solver, based on the harmonic-mean. This method is
justified to have a strong convergence order of 1

2
. Further, we investigate mean-square stability

of the proposed method for linear scalar stochastic differential equation. Finally, some examples
are included to demonstrate the validity and efficiency of the introduced scheme.
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1. Introduction

Many phenomena in various branches of science like physics, chemistry and en-
gineering can be modeled more efficiently by the stochastic differential equations
(SDEs) [3,5,6,15]. Since analytical solutions of SDEs are generally not available, we
are forced to use numerical methods that give approximated solutions [8,9,13,15,21,
25,29,40]. First attempt in this direction was made by Maruyama [17], who estab-
lished the well-known Euler-Maruyama (EM) method, then Milstein [18] presented
an important numerical scheme with faster convergence than EM method [9,10,35].
Based on EM and Milstein methods, many numerical schemes have been presented
and developed later, see for example [2, 11, 12, 19, 22, 23, 30, 36, 37].
In [24], Platen and Wagner proposed a stochastic generalization of the Taylor for-
mula for Itô diffusions. This generalization, called the Itô-Taylor expansions, was
based upon the use of multiple stochastic integrals. The Itô-Taylor expansions are
characterized by the choice of multiple integrals which appear in them. Many nu-
merical methods based on Itô-Taylor expansions have been presented for simulating
the approximate solutions to SDEs [15,20]. In this paper we will consider numerical
methods for strong solution of Itô stochastic differential systems of the form

(1) dX(t) = f(X(t))dt+

m
∑

j=1

gj(X(t))dBj(t), X(t0) = X0, t ∈ [t0, T ],

where X ∈ Rd, f : Rd → Rd, is a drift vector, g = (g1, . . . , gm) : Rd → Rd×m is
a diffusion matrix and B = (B1, . . . , Bm)T is an m–dimensional Brownian motion
process. Similarly to contributions [8, 25, 34], we design and analyze the strong
convergence of a class of general split-step methods for solving the Itô stochastic
differential system (1).
Nowadays, stability is judged better to account the efficiency of numerical methods
for solving SDEs. Several kinds of these stabilities have been proposed in [13,14,16].
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Throughout this paper the so-called mean-square (MS) stability will be considered.
This kind of stability, which is based on the second statistical moment of the (exact
or numerical) solution, has been considered in the literature so far [4, 7, 26, 33, 39].
In order to discuss mean-square stability properties of our proposed method, we
will focus on the special linear scalar Itô test equation

(2) dX(t) = aX(t)dt+ bX(t)dB(t), t ≥ t0, X(t0) = X0,

where a, b ∈ C and X0 6= 0 are constants. For numerical step size h and a, b ∈ R,
Saito and Mitsui [26] plot MS-stability region in the (h, k)-plane, with h = ah,

k = − b2

a . Then, Higham [11] performed the analysis in the (x, y)-plane with x = ah,

y = b2h, which has been accepted by researchers for presenting MS-stability domain
of numerical stochastic methods [4,7,11,33]. Moreover, some MS-stability domains

have been plotted with x = ah, y = b
√
h and a, b ∈ R (see [8, 30, 34, 37, 39]).

The paper is organized as follows. Section 2 is devoted to introducing the proposed
method. Convergence properties of the method are discussed in Section 3. Mean-
square stability properties and numerical results of the method are reported in
Sections 4 and 5, respectively.

2. General split-step method

For solving stochastic differential system (1), thereupon we present general split-
step methods, based on EM numerical scheme, of the form











Y k = Yk + hϕ(Yk, Y k),

Yk+1 = Y k +

m
∑

j=1

gj(Y k)∆B
j
k,

(3)

where ϕ(Yk, Y k) is an increment function of the deterministic ordinary differential
equation (ODE) solver. This idea was first presented by Higham in [12], as a
modification of the classical EM method, which is usually referred to as split-step
methods. This approach is a class of fully implicit methods which allows us the
incorporation of implicitness in the stochastic part of the system with relatively
little additional cost. Then, Wang and Li in [36] presented two types of split-step
methods, drifting split-step Euler and diffused split-step Euler methods, for SDEs
by a single noise term. Ding et al. [4] have analysed the split-step θ-methods for
solving nonlinear non-autonomous SDEs. Guo et al. in [7] improved split-step θ-
methods for solving SDEs systems by a single noise term. Recently, error corrected
EM method, which is constructed by adding an error correction term to the EM
method, was introduced in [39].
Instead of using the above methods on the increment function, we replace them
by a method based on different means to solve ODEs. In this paper, based on the
concept of averaging the harmonic-mean functional [27, 38], we consider the ODE
solver in the form,

(4) ϕ(Yk, Y k) = (1− θ)f(Y k) + 2θ
(

f−1(Yk) + f−1(Y k)
)−1

, θ ∈ [0, 1].

Here f−1(·) = 1
f(·) and we assume that f(Yk) + f(Y k) 6= 0. The choice θ = 0

and m = 1 becomes the method introduced in [12]. Note that by inserting ODEs
solver harmonic-mean θ (HMT) (4) into general split-step method (3), we have the


