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LOCALLY CONSERVATIVE FINITE ELEMENT SOLUTIONS FOR

PARABOLIC EQUATIONS

WENBO GONG AND QINGSONG ZOU

Abstract. In this paper, we post-process the finite element solutions for parabolic equations to
meet discrete conservation laws in element-level. The post-processing procedure are implemented
by two different approaches : one is by computing a globally continuous flux function and the
other is by computing the so-called finite-volume-element-like solution. Both approaches only
require to solve a small linear system on each element of the underlying mesh. The post-processed
flux converges to the exact flux with optimal convergence rates. Numerical computations verify
our theoretical findings.
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1. Introduction.

We consider numerical solutions of the following spatially-two-dimensional par-
abolic equations :

(1)





ut −∇ · (κ(x)∇u) = f(x, t), (x, t) ∈ Ω× (0, T ],

u = 0, x ∈ ∂Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω,

where Ω is a convex bounded polygonal domain in R
2 with boundary ∂Ω. We

assume that f(x, t) ∈ L2(Ω) for t ∈ [0, T ] and the coefficient function κ is Lipschitz
continuous, there exits two positive constants κ∗ and κ∗ such that κ∗ 6 κ(x) 6
κ∗ for almost all x ∈ Ω. The above parabolic equations are widely used in the
modelling of physical phenomena such as that from hydrological, biological and
biogeochemical disciplines [6, 10, 19, 30]. Due to the lack of analytical solution and
the expensive cost of physical experiments, numerical simulations received a great
deal of attention in the study of parabolic problems. Among all numerical methods,
those who guarantee locally conservation laws received a great deal of attention.

The finite volume method (FVM, see e.g.,[3, 11, 13, 17, 16])) is an important
numerical method which preserves the conservation law in element level, it is very
popular in computational fluid dynamics(CFD, see e.g., [24]). However, the linear
algebraic system resulting from the FVM is generally non-symmetric, its implemen-
tation and analysis is challenging, especially for high order schemes(c.f., [2, 12, 18,
25, 26, 29]). The linear system derived from the finite element method(FEM) is
symmetric and thus can be computed with many fast solvers. The FEM solutions,
however, do not satisfy the local conservation laws. Therefore, many efforts have
been made to post-process FEM solutions to derive solutions which satisfy local
conservation laws during the past several decades. To the best of our knowledge,
the first work on post-processing of the FEM solutions to derive locally conser-
vative fluxes can be traced back to Douglas, Dupont and Wheeler([9]), which is
designed in 1974 for elliptic equations. Thereafter a lot of works along this direc-
tion are reported in the literature. For instances, in 2006, Bochev and Gunzburger
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develop a flux-correction procedure for the Darcy flow equation based on the least-
squares method, their derived solution guarantees local conservation law without
compromising its L2 accuracy ([5]). In 2007, Cockburn et al. present a two-step
post-processing algorithm to generate a conservative flux([8]). In 2013, Pouliot et
al. post-process the FEM solutions based on the flux superconvergent-points([21]).
In [28] , Zhang et al. develop elemenwisely conservative flux by correcting the FEM
solution element-by-element. In [32], Zou et al. derive volume-wisely conservative
flux by solving a small linear system in each element of the underlying mesh.

In the present paper, we apply the post-processing techniques in [32] to parabolic
equations. As that in [32], our post procedure here can be implemented element-
wisely. Moreover, our post processing techniques share almost all advantages pos-
sessed by the techniques in [32]. For instances, the post-precessed numerical flux
satisfies the local conservation law and converges to the exact flux with optimal
orders, etc. However, since the parabolic equation is related to the time evolution,
our post-processing procedure here is significantly different from that for elliptic
equations by solving an ordinary differential equation system in each element of
the underlying mesh instead of solving a static linear system in each element of the
underlying mesh which is done in [32].

The rest of the paper is organized as below. In Section 2, we present semi-
discrete FEM and FVM solutions and their related properties. In Section 3, we
post-process the semi-discrete FEM solution to obtain a globally continuous flux
function and a finite-volume-element-like solution, both locally conservative. The
approximation property of the post-processed solution will be also discussed. In
Section 4, we illustrate how to implement our post-processing techniques in practical
algorithms associated with a certain temporal discretization. In Section 5, several
numerical experiments are made to demonstrate the efficiency and accuracy of our
post-processing algorithms.

We close the section by an introduction of some notation. Let D ⊂ R
2 be an

open bounded domain with Lipschitz continuous boundary. We adopt standard
notations for Sobolev spaces such as Wm,p(D) on sub-domain D ⊂ Ω equipped
with the norm ‖ · ‖m,p,D and semi-norm | · |m,p,D. When D = Ω, we omit the
index D; and if p = 2, we set Wm,p(D) = Hm(D), ‖ · ‖m,p,D = ‖ · ‖m,D, and
| · |m,p,D = | · |m,D. Notation A . B implies that A can be bounded by B multiplied
by a constant independent of the mesh size h. A ' B means that both A . B and
B . A.

2. Semi-discrete finite element and finite volume solutions.

To illustrate our basic idea on post-processing, we only present the semi-discrete
schemes instead of fully-discrete schemes for (1) in this section. We begin our
presentation with an introduction on the spatial discretization. Let Th = {τ} be a
family of quasi-uniform and shape-regular triangulation on Ω. We denote by Nh,
N̊h, Eh, E̊h the set of all vertices, the set of internal vertices, the set of all edges,
and the set of internal edges, respectively. Let the standard linear finite element
space be

Vh = {v ∈ C(Ω) : v|τ ∈ P1, ∀τ ∈ Th, v|∂Ω = 0},

where P1 is the space of all first-order polynomials. It’s known that Vh ⊂ H1
0 (Ω)

and it has a standard Lagrange basis Sh(T ) = span{φP , P ∈ N̊h}, where φP ∈ Vh
is nodal basis function satisfying φP (P

′) = δPP ′ .


