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THE WEAK GALERKIN FINITE ELEMENT METHOD FOR
SOLVING THE TIME-DEPENDENT STOKES FLOW

XIULI WANG, YUANYUAN LIU, AND QILONG ZHAI

Abstract. In this paper, we solve the time-dependent Stokes problem by the weak Galerkin (WG)
finite element method. Full-discrete WG finite element scheme is obtained by applying the implicit
backward Euler method for time discretization. Optimal order error estimates are established for
the corresponding numerical approximation in H! norm for the velocity, and L? norm for both
the velocity and the pressure in semi-discrete forms and full-discrete forms, respectively. Some
computational results are presented to demonstrate the accuracy, convergence and efficiency of
the method.
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1. Introduction

The Stokes problem [27] describes the dynamics of fluid flows in complex porous
media. It has wide applications in industrial and scientific fields, such as, petroleum,
biomedical engineering, and heat conduction model, etc. In this paper, we consider
the time-dependent Stokes problem, which has been treated by various numerical
methods, such as the finite element methods (FEMs) [9, 13], the finite volume meth-
ods [1, 21], the discontinuous Galerkin methods [2, 3, 10, 28], and the weak Galerkin
finite element methods [4, 15]. We provide a new developed weak Galerkin finite
element method in this paper. The concerning time-dependent Stokes equation
seeks the velocity function u and pressure function p satisfying

(1) w—pAu+Vp = f in Qx(0,7],
(2) V-u = 0,inQx(0,7],
(3) u = g, ondx (0,7,
(4) u(-,0) = u’ inQ,

where Q is a polygonal or polyhedral domain in R? (d = 2,3). fis a momentum
source term, p > 0 is the kinematic viscosity, and u; is the time partial derivation
of u(x,t). We assume that f, g and u’ are given, sufficiently smooth functions. For
simplicity, we consider (1) and (3) with x =1 and g = 0.

The weak forms in the primary velocity-pressure formulations for the Stokes
problems (1)-(4) find (u;p) € L2(0, T; [HE(Q)]4) x L2(0,T; LE(Q)), for any (v;q) €
[HE(Q)]4 x L3(Q2) with ¢ € (0, T satisfying

(ut7 V) + (vu7 VV) - (p7 V- V) = (fa V)v
(¢,V-u) = 0.

For the discretization of the Stokes equation, we use the weak Galerkin (WQ)

finite element method. The WG method was first introduced in 2011 [14] for the

second order elliptic problem and further applied to other partial differential equa-
tions, for example, the second order elliptic equation[12, 16, 22], the Stokes equation
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[17, 18, 24], linear elasticity equations [11], the parabolic equations [22, 25, 29] the
Brinkman equation [19, 23], the Biharmon problem [6, 7, 26] and the Helmholtz
equation [8], etc. The WG method refers to a general finite element technique for
partial differential equations in which differential operators are approximated by
weak forms as distributions for generalized functions. The main idea of the WG
method is the use of weak functions and their corresponding weak derivatives de-
fined as distributions. Weak functions and weak derivatives can be approximated
by polynomials with arbitrary degrees. Thus, there are three prominent features:
(1) The usual derivatives are replaced by distributions or discrete approximations
of distributions; (2) The approximating functions are discontinuous; (3) The WG
method allows the use of finite element partitions with arbitrary shape of polygons
in 2D or polyhedra in 3D with certain shape regularity. These features make the
WG method have many advantages, such as high order of accuracy, high flexibility,
and easy handling of complicated geometries.

In this paper, we provide an effective WG finite element method for the time-
dependent Stokes equation. The weak Galerkin finite element space consists of
discontinuous piecewise polynomials of degree k > 1 for the velocity u and poly-
nomials of degree k — 1 for the pressure p, respectively. The paper is organized
as follows. In Section 2, we introduce some standard notations in Sobolev space
and then develop the semi-discrete and full-discrete WG finite element scheme for
the Stokes equation (1)-(4). For time discretization, we use the backward Euler
method, which is an implicit method. In Section 3, we derive the semi-discrete
and full-discrete error equations for the WG approximations. Optimal order error
estimates for both the semi-discrete and full-discrete backward Euler WG finite
element approximations are established in Section 4 in H' norm for the velocity
and L? norm for both the velocity and the pressure functions. Finally, in Section
5, we present some numerical experiments to confirm the theoretical analysis.

2. The Weak Galerkin Finite Element Method

In this section, we introduce some preliminaries and notations for Sobolev space,
the semi-discrete and full-discrete WG finite element schemes for the Stokes problem
(1)-(4).

Let D be any open bounded domain with Lipschitz continuous boundary in
R? (d = 2,3). We use the standard notations for the Sobolev space H*(D), and
the associated inner product (-,-)s p, norm | - ||s p, and semi-norm | - |5 p for any
s > 0. The space H°(D) coincides with L?(D), for which the norm and the inner
product are denoted by || - ||p and (-, -)p, respectively. When D = Q, we shall drop
the subscript D in the norm and inner product notation.

Let T, be a partition of the domain € consisting of polygons in R? or polyhedral
in R? satisfying a set of conditions [5], and T" be each element with T as its
boundary. &, is the set of all edges or flat faces in Ty, and 52 = &EL\ON is the set
of all interior edges or flat faces. For each T' € T}, denote by hr the diameter of T,
and h = maxrpe7;, is the mesh size of 7p,.

We define weak Galerkin finite element space for the velocity function u and the
pressure function p, as follows

Vi = {v=1{vo,vs},volr € [Pe(T)], vs|ec € [Pe_1(e)]?, VT € Ty, Ve € OT},
%5 {v eV, v, =0o0n 00},
Wh {q:q € L), q|r € Po_1(T),YT € Tp,}.



