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ASYMPTOTICALLY EXACT A POSTERIORI ERROR

ESTIMATES FOR THE LOCAL DISCONTINUOUS

GALERKIN METHOD FOR NONLINEAR KDV

EQUATIONS IN ONE SPACE DIMENSION

MAHBOUB BACCOUCH

Abstract. In this paper, we develop and analyze an implicit a posteriori error estimates
for the local discontinuous Galerkin (LDG) method for nonlinear third-order Korteweg-de
Vries (KdV) equations in one space dimension. First, we show that the LDG error on each
element can be split into two parts. The first part is proportional to the (p+1)-degree right
Radau polynomial and the second part converges with order p+ 3

2
in the L2-norm, when

piecewise polynomials of degree at most p are used. These results allow us to construct
a posteriori LDG error estimates. The proposed error estimates are computationally
simple and are obtained by solving a local steady problem with no boundary conditions
on each element. Furthermore, we prove that, for smooth solutions, these a posteriori
error estimates converge at a fixed time to the exact spatial errors in the L2-norm under
mesh refinement. The order of convergence is proved to be p+ 3

2
. Finally, we prove that

the global effectivity index converges to unity at O(h
1
2 ) rate. Several numerical examples

are provided to illustrate the global superconvergence results and the convergence of the
proposed error estimator.
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1. Introduction

KdV-type equations describe the propagation of waves in a variety of non-
linear, dispersive media and appear often in many physical applications; see
e.g. [27, 30] and the references therein. In this paper, we propose and ana-
lyze a residual-based a posteriori error estimator for the local discontinuous
Galerkin (LDG) method for one-dimensional nonlinear Korteweg-de Vries
(KdV) equations of the form

ut + (f(u))x + uxxx = g(x, t), x ∈ Ω = [a, b], t ∈ [0, T ],(1a)

subject to the initial condition

u(x, 0) = u0(x), x ∈ [a, b],(1b)

and periodic boundary conditions. Here, g(x, t), and u0(x) are some given
smooth functions. We assume that the nonlinear flux function f(u) is suf-
ficiently smooth with respect to the variable u and the exact solution is
also smooth on [a, b] × [0, T ] for a fixed time T . For the sake of simplicity,
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we only consider periodic boundary conditions. This assumption is not es-
sential and the LDG scheme can be easily designed for purely Dirichlet or
Mixed Dirichlet-Neumann boundary conditions; see [4, 7, 13, 19] for some
discussion.

The LDGmethod is a successful numerical technique for solving linear and
nonlinear partial differential equations (PDEs) containing higher than first-
order spatial derivatives. It was first introduced by Cockburn and Shu [29]
for solving convection-diffusion problems. Since then, several LDG schemes
have been developed and analyzed for various high order differential equa-
tions in one and multiple dimensions including two-point boundary-value
problems [20, 21, 22, 23, 24], convection-diffusion problems [2, 4, 7, 13, 26,
29], second-order wave equations [3, 9, 10, 11, 14], the sine-Gordon equation
[15, 16, 17, 18, 25], KdV-type equations [12, 19, 31, 33, 34, 35, 36, 37], and the
fourth-order Euler-Bernoulli beam equation [5, 6, 8], just to mention a few.
The LDG method has many advantages over the classical numerical meth-
ods available in the literature such as the finite difference and finite element
methods. For instance, LDG methods are robust and high-order accurate,
can achieve stability without slope limiters, and are element-wise conser-
vative. Moreover, LDG methods are extremely flexible in the mesh-design,
they can easily handle meshes with hanging nodes, elements of various types
and shapes, and local spaces of different orders. As we shall see below, they
further exhibit global superconvergence properties that can be used to con-
struct asymptotically exact a posteriori error estimates by solving a local
residual problem on each element. More details about the LDG methods
for high order time dependent PDEs can be found in the review paper [35]
and the proceeding of Shu [32]. Furthermore, some LDG methods for solv-
ing high order PDEs were developed by Yan and Shu [38], which were high
order accurate and stable schemes.

In [12], we presented a posteriori error estimates for the LDG method for
the linearized KdV equation in one space dimension ut + αux + βuxxx = 0.
The proposed error estimates are computationally simple and are obtained
by solving a local steady problem with no boundary condition on each el-
ement. We proved that the significant parts of the spatial discretization
errors for the LDG solution and its spatial derivatives (up to second order)
are proportional to (p+1)-degree Radau polynomials. We used these results
to develop asymptotically exact a posteriori error estimates. We also proved
that, for smooth solutions, the proposed a posteriori LDG error estimates
for the solution and its spatial derivatives, at a fixed time t, converge to the

true errors at O(hp+
3
2 ) rate. The purpose of this paper is to extend these

results to nonlinear KdV equations of the form (1). In [19], we presented
and analyzed a superconvergent LDG scheme for solving (1). Optimal a pri-
ori error estimates for the LDG solution and for the two auxiliary variables
that approximate the first- and second-order derivatives are derived in the
L2-norm. The order of convergence is proved to be p + 1. We also proved
that the derivative of the LDG solution is superconvergent with order p+1


