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A CONFORMING DISCONTINUOUS GALERKIN FINITE

ELEMENT METHOD: PART III

XIU YE AND SHANGYOU ZHANG

Abstract. The conforming discontinuous Galerkin (CDG) finite element methods were intro-
duced in [12] on simplicial meshes and in [13] on polytopal meshes. The CDG method gets
its name by combining the features of both conforming finite element method and discontinuous
Galerkin (DG) finite element method. The goal of this paper is to continue our efforts on simplify-

ing formulations for the finite element method with discontinuous approximation by constructing
new spaces for the gradient approximation. Error estimates of optimal order are established for
the corresponding CDG finite element approximation in both a discrete H1 norm and the L2

norm. Numerical results are presented to confirm the theory.
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1. Introduction

Finite element methods with discontinuous approximation are flexible in finite
element construction and mesh generation. However, when discontinuous approx-
imation is used, finite element formulations tend to be more complex to ensure
connection of discontinuous function across element boundary. For example, stabi-
lizing/penalty terms are often needed in finite element methods with discontinuous
approximations to enforce connection of discontinuous functions across element
boundaries [2, 4, 5, 6, 7, 9, 10]. Removing stabilizing term from discontinuous
finite element methods will reduce the complexity of formulation and computer
programming.

Aiming on simplifying finite element formulation with discontinuous approxima-
tion, conforming discontinuous Galerkin finite element methods have been devel-
oped in [12] on simplicial mesh and in [13] on polytopal mesh for the following
model problem: seek an unknown function u satisfying

−∆u = f in Ω,(1)

u = 0 on ∂Ω,(2)

where Ω is a bounded polytopal domain in Rd. The weak form of the problem
(1)-(2) is given as follows: find u ∈ H1

0 (Ω) such that

(∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω).(3)

Conforming discontinuous Galerkin finite element method by name maintains the
flexibility of DG methods and the features of conforming finite element method
such as simple formulation: find uh ∈ Vh such that

(4) (∇wuh,∇wv) = (f, v) ∀v ∈ Vh,

where ∇w is a approximation of gradient ∇. Construction of the space to approxi-
mate ∇ is the key of maintaining ultra simple formulation (4). In [13], gradient is
approximated by a polynomial of order j = k + n − 1 with n the number of sides
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of polygonal element. This result has been improved in [1] by reducing the degree
of polynomial j. In [8], Wachspress coordinates are used to approximate ∇, which
are usually rational functions, instead of polynomials.

The goal of this paper is to develop a new CDG finite element method with a
different philosophy to approximate gradient ∇. In this method, we use piecewise
low order polynomial to approximate ∇w instead of using one piece high order
polynomial in [13]. Optimal order error estimates are established for the corre-
sponding conforming DG approximations in both a discrete H1 norm and the L2

norm. Numerical results are presented verifying the theorem.

2. Preliminaries

For any given polygon D ⊆ Ω, we use the standard definition of Sobolev spaces
Hs(D) with s ≥ 0. The associated inner product, norm, and semi-norms in Hs(D)
are denoted by (·, ·)s,D, ∥ · ∥s,D, and | · |s,D, respectively. When s = 0, H0(D)
coincides with the space of square integrable functions L2(D). In this case, the
subscript s is suppressed from the notation of norm, semi-norm, and inner products.
Furthermore, the subscript D is also suppressed when D = Ω.

Let Th be a partition of the domain Ω consisting of polygons in two dimension or
polyhedra in three dimension satisfying a set of conditions specified in [11]. Denote
by Eh the set of all edges/faces in Th, and let E0

h = Eh\∂Ω be the set of all interior
edges/faces. For simplicity, we will use term edge for edge/face without confusion.

Let Pk(K) consist all the polynomials degree less or equal to k defined on K. A
finite element space Vh is defined for k ≥ 1 as

(5) Vh =
{
v ∈ L2(Ω) : v|T ∈ Pk(T ), T ∈ Th

}
.

Let T1 and T2 be two polygons/polyhedrons in Th sharing e ∈ Eh. For e ∈ Eh and
v ∈ Vh +H1(Ω), the jump [v] is defined as

(6) [v] = v if e ⊂ ∂Ω, [v] = v|T1 − v|T2 if e ∈ E0
h.

The order of T1 and T2 is not essential. For e ∈ Eh and v ∈ Vh+H1(Ω), the average
{v} is defined as

(7) {v} = 0 if e ⊂ ∂Ω, {v} =
1

2
(v|T1 + v|T2) if e ∈ E0

h.

The space H(div; Ω) is defined as the set of vector-valued functions on Ω which,
together with their divergence, are square integrable; i.e.,

H(div; Ω) =
{
v ∈ [L2(Ω)]d : ∇ · v ∈ L2(Ω)

}
.

For any T ∈ Th, it can be divided in to a set of disjoint triangles Ti with T = ∪Ti.
Then Λh(T ) can be defined as

(8) Λk(T ) = {v ∈ H(div, T ), v|Ti ∈ RTk(T )},

where RTk(T ) is the usual Raviart-Thomas element of order k [3].
For a function v ∈ Vh +H1(Ω), its weak gradient ∇wv is defined as a piecewise

vector valued polynomial such that ∇wv|T ∈ Λk(T ) and satisfies the following
equation,

(9) (∇wv,q)T = −(v,∇ · q)T + ⟨{v},q · n⟩∂T ∀q ∈ Λk(T ).


