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NUMERICAL ANALYSIS OF A HISTORY-DEPENDENT

VARIATIONAL-HEMIVARIATIONAL INEQUALITY FOR A

VISCOPLASTIC CONTACT PROBLEM

XIAOLIANG CHENG AND XILU WANG∗

Abstract. In this paper, we consider a mathematical model which describes the quasistatic
frictionless contact between a viscoplastic body and a foundation. The contact is modeled with
normal compliance and unilateral constraint. We present the variational-hemivariational formu-

lation of the model and prove its unique solvability. Then we introduce a fully discrete scheme to
solve the problem and derive an error estimate. Under appropriate regularity assumptions of the
exact solution, we obtain the optimal order error estimate. Finally, numerical results are reported
to show the performance of the numerical method.
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1. Introduction

In this paper, we consider a frictionless contact model for rate-type viscoplastic
materials. The constitutive law of such materials can be described in the form of

σ̇(t) = Eε(u̇(t)) + G(σ(t), ε(u(t)),(1)

where u,σ, ε(u) denote the displacement, the stress tensor and the linearized strain
tensor, respectively. Operator E is linear and describes the elastic properties of
the material. Operator G is a nonlinear constitutive function and describes the
viscoplastic behavior.

Viscoplastic models are used to describe the behavior of real materials like rub-
bers, metals, rocks and so on. Concrete examples, experimental background and
mechanical interpretation concerning viscoplastic materials can be found in [8].
Mathematical modeling, well-posedness and numerical analysis concerning (1) and
its variations can be found in [24, 4, 10, 1, 25] and references therein. For compre-
hensive studies, we also refer to the book [13]. However, all these monographs are
in the framework of variational inequalities.

The notation of hemivariational inequality was first introduced in the 1980’s
([23]). It is related to the concept of the generalized gradient of a locally Lips-
chitz function ([7]). In contrast to variational inequalities with convex structures,
hemivariational inequalities are mathematical problems involving nonconvex terms.
Particularly, variational-hemivariational inequalities involve both convex and non-
convex terms. During the last three decades, hemivariational inequalities were
shown to be a very useful tool, especially in contact mechanics ([21]). Various ap-
plications to viscoelastic contact models have been studied in [12, 2, 15, 14]. More-
over, if there is a history-dependent operator in the viscoelastic contact model, the
problem leads to the history-dependent hemivariational inequality ([19, 26, 22, 27]).
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Compared with the well-developed studies on viscoelastic contact models, there
are relatively few publications devoted to hemivariational inequalities for viscoplas-
tic materials. The difficulty lies in the complex viscoplastic constitutive law. Taking
the integral of Equation (1):

σ(t) = Eε(u(t)) +
∫ t

0

G(σ(s), ε(u(s))) ds+ σ(0)− Eε(u(0)),(2)

it naturally contains the history-dependent term. What’s more, the constitutive
law has an implicit expression of stress field σ. It means that, when proving the
existence result, we need to consider a coupled system which is a history-dependent
hemivariational inequality combined with an integral equation, rather than only
one hemivariational inequality. When deriving error estimates, since σ can not be
described by u directly, we have to handle both u and σ, rather than only u.

Related references are in the following. In [5], a quasistatic viscoplastic contact
problem is proved to have a unique weak solution. The existence and uniqueness
results are obtained for the quasistatic contact model with memory term in [16],
moreover with memory and damage terms in [17]. The unique weak solvability for a
dynamic contact problem is the topic of [20]. In [18], the dynamic contact problem
with damage is proved to have a unique weak solution. To our knowledge, numerical
analysis and numerical simulation for hemivariational inequalities for viscoplastic
materials have not been investigated in the literature so far and we fill this gap
in the present paper. The problem concerned here is a quasistatic contact with
normal compliance, unilateral constraint and viscoplastic materials.

The paper is structured as follows. In Section 2, we present some necessary
preliminaries. In Section 3, we describe the model of the contact process, derive its
variational-hemivariational formulation, state the existence and uniqueness theorem
and prove it. Then in Section 4, we introduce a fully discrete scheme and provide
the error estimates. Finally, in Section 5, we present some numerical examples
which provide numerical evidence of our theoretical results.

2. Preliminaries

In this section, we present some necessary notation and preliminary material
which we will use in our paper.

Let X be a Banach space. We first recall the definitions of the generalized
directional derivative and the generalized gradient of Clarke for a locally Lipschitz
function φ : X → R ([7]). The generalized directional derivative of φ at x ∈ X in
the direction v ∈ X, denoted by φ0(x; v), is defined by

φ0(x; v) = lim sup
y→x,t↓0

φ(y+tv)−φ(y)
t .

The generalized gradient of φ at x, denoted by ∂Clφ(x), is a subset of a dual space
X∗ given by ∂Clφ(x) = { ζ ∈ X∗ | φ0(x; v) ≥ ⟨ζ, v⟩X∗×X for all v ∈ X}. In
particular, here we present two basic properties provided in [7]:

φ0(x; v) = max { ⟨ζ, v⟩ | ζ ∈ ∂Clφ(x) },(3)

φ0(x; v1 + v2) ≤ φ0(x; v1) + φ0(x; v2).(4)

Let d be a positive integer. The linear space of second-order symmetric tensors
on Rd is denoted by Sd. The inner products and the corresponding norms on Rd

and Sd are given by

u · v = uivi, ∥v∥Rd = (v · v)1/2 for all u,v ∈ Rd,

σ : τ = σij τij , ∥τ∥Sd = (τ · τ )1/2 for all σ, τ ∈ Sd.


