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CONNECTION BETWEEN GRAD-DIV STABILIZED STOKES

FINITE ELEMENTS AND DIVERGENCE-FREE STOKES FINITE

ELEMENTS

MICHAEL NEILAN AND AHMED ZYTOON

Abstract. In this paper, we use recently developed theories of divergence–free finite element
schemes to analyze methods for the Stokes problem with grad-div stabilization. For example, we

show that, if the polynomial degree is sufficiently large, the solutions of the Taylor–Hood finite
element scheme converges to an optimal convergence exactly divergence–free solution as the grad-
div parameter tends to infinity. In addition, we introduce and analyze a stable first-order scheme
that does not exhibit locking phenomenon for large grad-div parameters.
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1. Introduction

Grad-div stabilization is a well-known and simple stabilization technique in nu-
merical discretizations to improve mass conservation in simulations of incompress-
ible flow. In its simplest form, the methodology adds the consistent term (written
in strong form)

−γ∇(∇ · u)

to the momentum equations of the (Navier-)Stokes equations. Here, γ > 0 is a
user-defined constant, which is referred to as the grad-div parameter. In addition
to improving conservation of mass of the scheme, this stabilization technique may
also improve the coupling errors of the velocity and pressure solutions. This can be
advantageous for situations with large pressure gradients, e.g., in natural convection
problems.

While enjoying many benefits, the use of grad-div stabilization comes with sev-
eral practical disadvantages. These include a deterioration of the condition number
and reduced sparsity of the algebraic system. Another disadvantage is the pos-
sible emergence of ‘locking’ for large grad-div parameters. Indeed, simply energy
arguments show the discrete velocity solution satisfies ∥∇ · uh∥ = O(γ−1), and
therefore, in the limiting case, the discrete solution is divergence–free. If the dis-
crete divergence–free subspace does not have rich enough approximation properties,
then grad-div stabilization, while improving mass conservation, may lead to poor
approximations.

The stability and convergence analysis for grad-div stabilization for incompress-
ible flow have been explored in, e.g., [23, 9, 10, 27, 1]. These estimates, together
with numerical simulations, provide a guide to choose optimal γ-values. For ex-
ample, references [24, 21, 23, 4] suggests γ = O(1) as the optimal value. On the
other hand, numerical experiments in [12] and the analysis in [27, 1] suggest that
the optimal choice may be much larger and depend on the finite element spaces,
the mesh, and/or the viscosity of the model.
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In another direction, and the path taken in this paper, is to identify and charac-
terize the limiting solution as the grad-div parameter tends to infinity. For exam-
ple, in [7, 19], it is shown that the Taylor–Hood finite element scheme on special
(Clough-Tocher) triangulations, no locking occurs in the limiting case γ → ∞, and
the Taylor–Hood grad-div solution converges to the analogous (divergence–free)
Scott–Vogelius solution.

The purpose of this paper is to extend and generalize the results in [7] by incor-
porating the recent theories of divergence–free finite element Stokes pairs. In this
regard, we make two main contributions. First we show the absence of locking for
the two-dimensional Taylor–Hood pair for a general class of meshes. In particular,
we show that high–order Taylor–Hood pairs are generally locking-free. In addition,
we show that the limiting (Taylor-Hood) solutions converge to the solution of the
divergence–free Scott-Vogelius scheme, defined on general triangulations. The sec-
ond contribution of the paper is the introduction and analysis of a new low–order
and stable finite element pair that is locking–free. The velocity space is simply the
linear Lagrange finite element space, and the pressure space consists of piecewise
constants with respect to an auxiliary coarsened mesh.

The paper is organized as follows. In the next section, we introduce the notation
and a framework for the grad-div finite element method for the Stokes problem. We
show that the discrete solutions converge to a solution of a divergence–free method
with rate O(γ−1). In Section 3, we apply this framework to the two-dimensional
Taylor–Hood elements. The general theme of the results is that additional mesh
constraints are imposed for lower degree polynomial spaces. In Section 4, we define
a stable first-order scheme for the Stokes problem, and show that the solutions
converge to a divergence–free method as γ → ∞. Finally, in Section 5 we provide
some numerical experiments.

2. Notation and Framework

The Stokes equations defined on a polytope domain Ω ⊂ Rd (d = 2, 3) with
Lipschitz continuous boundary ∂Ω is given by the system of equations

−µ∆u+∇p = f in Ω,(1a)

∇ · u = 0 in Ω,(1b)

u = 0 on ∂Ω,(1c)

where the u is the velocity, p the pressure, and ∇, ∆ denote the gradient operator
and vector Laplacian operators, respectively. In (1a), µ is the viscosity.

We define the following function spaces on Ω:

L2(Ω) := {w : Ω 7→ R : ∥w∥L2(Ω) := (

∫
Ω

|w|2 dx)1/2 <∞},

Hm(Ω) := {w : Ω 7→ R : ∥w∥Hm(Ω) := (
∑

|β|≤m

∥Dβw∥2L2(Ω))
1/2 <∞},

and set (·, ·) denote the inner product on L2(Ω) and set ∥ · ∥ = ∥ · ∥L2(Ω). The
analogous spaces with boundary conditions are given by

L2
0(Ω) := {w ∈ L2(Ω) :

∫
Ω

w dx = 0},

Hm
0 (Ω) := {w ∈ Hm(Ω) : Dβw|∂Ω = 0, ∀β : |β| ≤ m− 1}.

We denote the analogous vector-valued function spaces in boldface; for example
H1(Ω) = H1(Ω)d and L2(Ω) = L2(Ω)d. We also define the space of H1

0 (Ω)


