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A P2-P1 PARTIALLY PENALIZED IMMERSED FINITE
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Abstract. In this article, we develop a Taylor-Hood immersed finite element (IFE) method to
solve two-dimensional Stokes interface problems. The P2-P1 local IFE spaces are constructed

using the least-squares approximation on an enlarged fictitious element. The partially penalized
IFE method with ghost penalty is employed for solving Stoke interface problems. Penalty terms
are imposed on both interface edges and the actual interface curves. Ghost penalty terms are
enforced to enhance the stability of the numerical scheme, especially for the pressure approxima-

tion. Optimal convergences are observed in various numerical experiments with different interface
shapes and coefficient configurations. The effects of the ghost penalty and the fictitious element
are also examined through numerical experiments.
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1. Introduction

In this paper, we consider the steady-state Stokes interface problem in the two-
dimensional case. Let Ω ⊂ R2 be an open bounded domain that is separated into
Ω+ and Ω− by a smooth interface curve Γ. Consider the following Stokes equation
in the velocity-pressure-stress form

−∇ · σ(u, p) = f , on Ω+ ∪ Ω−,(1a)

∇ · u = 0, on Ω+ ∪ Ω−,(1b)

u = 0, on ∂Ω.(1c)

Here, f is given body force. u represents flow velocity field of an incompressible
fluid motion, and p denotes the pressure. σ(u, p) is the stress tensor defined by

(1d) σ(u, p) = 2νϵ(u)− pI

where the strain tensor ϵ(u) = 1
2 (∇u+(∇u)t). Across the interface Γ, the viscosity

coefficient ν(x) is discontinuous. Without loss of generality, we assume that ν is a
piecewise constant function as follows:

(1e) ν =

{
ν+, in Ω+,
ν−, in Ω−.

Across the interface Γ, the following jump conditions are enforced:

[[u]]Γ = 0, on Γ,(1f)

[[σ(u, p)n]]Γ = 0, on Γ,(1g)

where the jump [[w(x)]]Γ = w+(x)|Γ − w−(x)|Γ, and n is the unit normal vector
on Γ pointing from Ω− to Ω+.
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The Stokes equation is a linearization of the well-known Navier-Stokes equation.
Stokes interface problems often describe multiphase flow with jumps in velocity,
pressure, and physical parameters. Simulations of multiphase flow are widely ap-
plied in fields of fluid dynamics and biology. Examples of these applications include
water-oil flow, bubble column reactors, drug delivery, treatment of lung diseases,
and polymer blending and polymer electrolyte membrane fuel cell [28], etc.

PDE Interface problems, including aforementioned Stokes interface problem,
have attracted great attention among mathematicians, computational scientists and
engineers in the past decades. A wide variety of numerical methods, particularly fi-
nite element method (FEM), have been developed and matured for solving interface
problems. There are roughly two classes of FEM when it comes to interface prob-
lems, namely the fitted-mesh FEM and the unfitted-mesh FEM. The fitted-mesh
method, such as the conventional FEM, requires the solution mesh to be aligned
with the interface; otherwise, the convergence of the numerical method could be
compromised. However, this body-fitting restriction limits its applicability from
problems involving a moving interface, as the solution mesh needs to be regener-
ated at each time level. On the contrast, unfitted-mesh methods usually alleviate
or even eliminate the restriction on mesh. Structured meshes, such as Cartesian
meshes, are usually adopted to solve interface problems with nontrivial interface
shape. See Figure 1 for an illustration of a comparison of an unfitted Cartesian
mesh and a fitted-mesh with a circular interface. This property is particularly ad-
vantageous for moving interface problems [5, 27, 30]. Numerical methods falling to
this class include generalized FEM [7], extended FEM (XFEM) [15], CutFEM [23]
and immersed FEM (IFEM) [34], to name only a few.

Figure 1. Non-body fitting (left) and body-fitting (right) meshes.

The idea of immersed finite element method [34] is to locally modify the standard
FEM basis functions around the interface to satisfiy specific interface jump condi-
tions from the physical laws. Piecewise polynomials are developed as new basis
functions on all elements intersected by interfaces. Several literatures [11, 12, 26,
27, 31, 38, 44] expand this idea to multi-dimensional elliptic interface problems and
higher-order approximation. Due to the discontinuity of IFE functions across the el-
ement boundaries, a partially penalized immersed finite element method (PPIFEM)
was proposed in [36] as an improvement of classical IFEM. The authors added
penalty terms on interface-intersected edges to the IFE scheme to enhance its sta-
bility. Many research papers on IFEM follow this idea in the recent years. For
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