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MULTI-SCALE NON-STANDARD FOURTH-ORDER PDE IN

IMAGE DENOISING AND ITS FIXED POINT ALGORITHM

ANIS THELJANI

Abstract. We consider a class of nonstandard high-order PDEs models, based on the (p(·), q(·))-
Kirchhoff operator with variable exponents for the image denoising problem. We theoretically
analyse the proposed non-linear model. Then, we use linearization method based on a fixed-point
iterative technique and we also prove the convergence of the iterative process. The model has a

multiscale character which follows from an adaptive selection of the exponents p(·) and q(·). The
latter task helps to capture, highlight and correlate major features in the images and optimize
the smoothing effect. We use Morley finite-elements for the numerical resolution of the proposed
model and we give several numerical examples and comparisons with different methods.
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1. Introduction

Image restoration is a fundamental task in image processing and it arises in
diverse fields such as geophysics, optics, medical imaging[33, 35, 37]. It is a
classical inverse problem which aims at reconstructing an image u : Ω → R from
an observed one f : Ω ⊂ R2 → R that is degraded and contaminated by noise. The
degradation model that we consider is the following:

(1) f = u+ η,

where η is Gaussian noise. Estimating u from the model (1) is an ill posed inverse
problem where a prior image model R(u) is required in order to successfully es-
timate u from the observations f . To incorporate a prior image model R(u) into
(1), variational approach is usually used and it consists in solving a minimization
problem that have the following form:

(2) min
u

{
J (u) := R(u) + λ0

2 ∥u− f∥2L2(Ω)

}
.

The prior R(·) in the energy J (·) have a regularization effect and usually contains
information about the image derivatives to reduce the noise that is considered as
high oscillations. The second part of the energy J (·) is the fitting term, λ0 is
a positive regularization parameter which controls the trade-off between the two
terms.

A main issue in image denoising is how to choose the “best” regularization term
R(·) that can selectively smooth a noisy image without losing significant features
such as edges and thin structures. Various regularizers based on first- or/and
second-order derivatives have been used [14, 7, 10, 40, 25]. In [33], the authors
proposed to use the well-known total variation (TV) regularizer R(u) = TV (u)
where

TV (u) :=

∫
Ω

|Du| = sup

{∫
Ω

udivφdx|φ ∈ C2
c (Ω,R2), |φ| ≤ 1

}
,
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which produces a piecewise constant restored images. However, TV also produces
staircase effects which is undesirable. This shortcoming gave rise to a class of a
combined first- and second-order derivatives as regularizer that in general damp
the noise faster and diminish the staircase effect. There have been many efforts to
improve the robustness and to reduce the staircasing effects of TV using the high-
order TV and total generalized variation (TGV) regularizer [11, 14]. Most of the
high-order models aim to extend the works in [12] (see also, e.g., [31, 38, 39, 43])
which uses straightforward convex combinations of first- and second- derivatives.
They are generally written in following form:

(3)

∫
Ω

G1(∇u) dx+

∫
Ω

G2(∇2u) dx+ λ0

2 ∥u− f∥2L2(Ω),

where G1(·) and G2(·) are given functions. In [41], a high-order total variation
model, called TV − TV 2, was proposed and it consists in minimizing the following
energy:

(4) αTV (u) + βTV 2(u) + λ0

2 ||u− f ||2L2(Ω),

where α and β are non-negative regularization parameters chosen empirically, TV (u)
and TV 2(u) are the total variations of u and ∇u, respectively.

Various variations of high-order models that are based on the above two energies
forms were proposed [44, 48, 26, 28]. Most of these models gave rise to a second-
or high-order non-linear PDEs that only consider nonlinear diffusion to denoise the
image. However, nonlinear diffusion is not always the best choice for homogeneous
regions, i.e. no edges but only some noise. In these regions, using linear diffusion is
more appropriate as it damps noise better than nonlinear diffusion. Ideally, there
should be a compromise between linear diffusion PDEs which are more interesting
and effective in homogeneous regions, and nonlinear diffusion PDEs that are more
powerful in regions containing edges and details.

Another class of approaches, known as nonstandard PDEs with p(·)-growth con-
ditions were also considered in several works (see e.g., [5, 46, 24, 36, 32]). In these
approaches, the regularizer takes the form of

R(u) =

∫
Ω

|∇u|p(x)dx,

where 1 ≤ p ≤ 2. The two extreme values of the exponent p = 1, 2 in the regular-
ization term lead to nonlinear (selective) diffusion and linear (isotropic) diffusion
equations. In fact, the total variation model is obtained for p = 1 and which
leads to a nonlinear diffusion PDEs where the diffusion is guided by the term 1

|∇u| .

Thus the diffusion will be selective and inverse proportional to |∇u|, i.e. for edges
where |∇u| is high, the diffusion will be enabled in order to keep edges, whereas
for the homogeneous regions where |∇u| is small, the diffusion will be strong and
the model behaves similarly to a Laplace smoothness operator. For p = 2, the
model leads to a PDE that uses the Laplace ∆· as diffusion operator. The latter
has an isotropic and linear diffusion property that can’t distinguish between edges
and homogeneous regions.

In these nonstandard regularizations, a compromise between fast/slow diffusion
is made by varying p(·) according to the local scales. The linear diffusion is en-
couraged away from the edges of the image and a nonlinear correction is enforced
near these singularities (see [27, 28, 26, 1, 8, 13]). To incorporate the singularity
information into the p(·), the authors in [8] used a variable exponent p(·) ranging
from 1 to 2 by taking p(|∇u|) where p(·) is a monotone decreasing function such
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